Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release

被引:100
作者
Gasser, T. [1 ]
Kechiar, M. [1 ,2 ]
Ciais, P. [3 ]
Burke, E. J. [4 ]
Kleinen, T. [5 ]
Zhu, D. [3 ]
Huang, Y. [3 ]
Ekici, A. [6 ,7 ]
Obersteiner, M. [1 ]
机构
[1] IIASA, Laxenburg, Austria
[2] Ecole Polytech, Palaiseau, France
[3] Univ Paris Saclay, CEA CNRS UVSQ, LSCE, IPSL, Gif Sur Yvette, France
[4] Met Off Hadley Ctr, Exeter, Devon, England
[5] Max Planck Inst Meteorol, Hamburg, Germany
[6] Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland
[7] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
基金
欧洲研究理事会;
关键词
CLIMATE-CHANGE; SOIL CARBON; PROPORTIONALITY; CONSISTENT; FEEDBACK; METHANE; STORAGE; COVER; MODEL; RISK;
D O I
10.1038/s41561-018-0227-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Emission budgets are defined as the cumulative amount of anthropogenic CO2 emission compatible with a global temperature-change target. The simplicity of the concept has made it attractive to policy-makers, yet it relies on a linear approximation of the global carbon-climate system's response to anthropogenic CO2 emissions. Here we investigate how emission budgets are impacted by the inclusion of CO2 and CH4 emissions caused by permafrost thaw, a non-linear and tipping process of the Earth system. We use the compact Earth system model OSCAR v2.2.1, in which parameterizations of permafrost thaw, soil organic matter decomposition and CO2 and CH4 emission were introduced based on four complex land surface models that specifically represent high-latitude processes. We found that permafrost carbon release makes emission budgets path dependent (that is, budgets also depend on the pathway followed to reach the target). The median remaining budget for the 2 degrees C target reduces by 8% (1-25%) if the target is avoided and net negative emissions prove feasible, by 13% (2-34%) if they do not prove feasible, by 16% (3-44%) if the target is overshot by 0.5 degrees C and by 25% (5-63%) if it is overshot by 1 degrees C. (Uncertainties are the minimum-to-maximum range across the permafrost models and scenarios.) For the 1.5 degrees C target, reductions in the median remaining budget range from similar to 10% to more than 100%. We conclude that the world is closer to exceeding the budget for the long-term target of the Paris Climate Agreement than previously thought.
引用
收藏
页码:830 / +
页数:9
相关论文
共 65 条
[21]   Robust Climate Policies Under Uncertainty: A Comparison of Robust Decision Making and Info-Gap Methods [J].
Hall, Jim W. ;
Lempert, Robert J. ;
Keller, Klaus ;
Hackbarth, Andrew ;
Mijere, Christophe ;
McInerney, David J. .
RISK ANALYSIS, 2012, 32 (10) :1657-1672
[22]   Strategies to adapt to an uncertain climate change [J].
Hallegatte, Stephane .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2009, 19 (02) :240-247
[23]   Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions [J].
Holmes, C. D. ;
Prather, M. J. ;
Sovde, O. A. ;
Myhre, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (01) :285-302
[24]   A new data set for estimating organic carbon storage to 3m depth in soils of the northern circumpolar permafrost region [J].
Hugelius, G. ;
Bockheim, J. G. ;
Camill, P. ;
Elberling, B. ;
Grosse, G. ;
Harden, J. W. ;
Johnson, K. ;
Jorgenson, T. ;
Koven, C. D. ;
Kuhry, P. ;
Michaelson, G. ;
Mishra, U. ;
Palmtag, J. ;
Ping, C. -L. ;
O'Donnell, J. ;
Schirrmeister, L. ;
Schuur, E. A. G. ;
Sheng, Y. ;
Smith, L. C. ;
Strauss, J. ;
Yu, Z. .
EARTH SYSTEM SCIENCE DATA, 2013, 5 (02) :393-402
[25]  
Huntingford C, 2013, NAT GEOSCI, V6, P268, DOI [10.1038/NGEO1741, 10.1038/ngeo1741]
[26]   Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands [J].
Hurtt, G. C. ;
Chini, L. P. ;
Frolking, S. ;
Betts, R. A. ;
Feddema, J. ;
Fischer, G. ;
Fisk, J. P. ;
Hibbard, K. ;
Houghton, R. A. ;
Janetos, A. ;
Jones, C. D. ;
Kindermann, G. ;
Kinoshita, T. ;
Goldewijk, Kees Klein ;
Riahi, K. ;
Shevliakova, E. ;
Smith, S. ;
Stehfest, E. ;
Thomson, A. ;
Thornton, P. ;
van Vuuren, D. P. ;
Wang, Y. P. .
CLIMATIC CHANGE, 2011, 109 (1-2) :117-161
[27]   Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways [J].
Jones, Chris ;
Robertson, Eddy ;
Arora, Vivek ;
Friedlingstein, Pierre ;
Shevliakova, Elena ;
Bopp, Laurent ;
Brovkin, Victor ;
Hajima, Tomohiro ;
Kato, Etsushi ;
Kawamiya, Michio ;
Liddicoat, Spencer ;
Lindsay, Keith ;
Reick, Christian H. ;
Roelandt, Caroline ;
Segschneider, Joachim ;
Tjiputra, Jerry .
JOURNAL OF CLIMATE, 2013, 26 (13) :4398-4413
[28]   An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake [J].
Joos, F ;
Bruno, M ;
Fink, R ;
Siegenthaler, U ;
Stocker, TF ;
LeQuere, C .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1996, 48 (03) :397-417
[29]   A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback [J].
Koven, C. D. ;
Schuur, E. A. G. ;
Schaedel, C. ;
Bohn, T. J. ;
Burke, E. J. ;
Chen, G. ;
Chen, X. ;
Ciais, P. ;
Grosse, G. ;
Harden, J. W. ;
Hayes, D. J. ;
Hugelius, G. ;
Jafarov, E. E. ;
Krinner, G. ;
Kuhry, P. ;
Lawrence, D. M. ;
MacDougall, A. H. ;
Marchenko, S. S. ;
McGuire, A. D. ;
Natali, S. M. ;
Nicolsky, D. J. ;
Olefeldt, D. ;
Peng, S. ;
Romanovsky, V. E. ;
Schaefer, K. M. ;
Strauss, J. ;
Treat, C. C. ;
Turetsky, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2054)
[30]  
Kunreuther H, 2013, NAT CLIM CHANGE, V3, P447, DOI [10.1038/NCLIMATE1740, 10.1038/nclimate1740]