Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release

被引:100
作者
Gasser, T. [1 ]
Kechiar, M. [1 ,2 ]
Ciais, P. [3 ]
Burke, E. J. [4 ]
Kleinen, T. [5 ]
Zhu, D. [3 ]
Huang, Y. [3 ]
Ekici, A. [6 ,7 ]
Obersteiner, M. [1 ]
机构
[1] IIASA, Laxenburg, Austria
[2] Ecole Polytech, Palaiseau, France
[3] Univ Paris Saclay, CEA CNRS UVSQ, LSCE, IPSL, Gif Sur Yvette, France
[4] Met Off Hadley Ctr, Exeter, Devon, England
[5] Max Planck Inst Meteorol, Hamburg, Germany
[6] Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland
[7] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
基金
欧洲研究理事会;
关键词
CLIMATE-CHANGE; SOIL CARBON; PROPORTIONALITY; CONSISTENT; FEEDBACK; METHANE; STORAGE; COVER; MODEL; RISK;
D O I
10.1038/s41561-018-0227-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Emission budgets are defined as the cumulative amount of anthropogenic CO2 emission compatible with a global temperature-change target. The simplicity of the concept has made it attractive to policy-makers, yet it relies on a linear approximation of the global carbon-climate system's response to anthropogenic CO2 emissions. Here we investigate how emission budgets are impacted by the inclusion of CO2 and CH4 emissions caused by permafrost thaw, a non-linear and tipping process of the Earth system. We use the compact Earth system model OSCAR v2.2.1, in which parameterizations of permafrost thaw, soil organic matter decomposition and CO2 and CH4 emission were introduced based on four complex land surface models that specifically represent high-latitude processes. We found that permafrost carbon release makes emission budgets path dependent (that is, budgets also depend on the pathway followed to reach the target). The median remaining budget for the 2 degrees C target reduces by 8% (1-25%) if the target is avoided and net negative emissions prove feasible, by 13% (2-34%) if they do not prove feasible, by 16% (3-44%) if the target is overshot by 0.5 degrees C and by 25% (5-63%) if it is overshot by 1 degrees C. (Uncertainties are the minimum-to-maximum range across the permafrost models and scenarios.) For the 1.5 degrees C target, reductions in the median remaining budget range from similar to 10% to more than 100%. We conclude that the world is closer to exceeding the budget for the long-term target of the Paris Climate Agreement than previously thought.
引用
收藏
页码:830 / +
页数:9
相关论文
共 65 条
[1]  
Allen MR, 2016, NAT CLIM CHANGE, V6, P773, DOI [10.1038/nclimate2998, 10.1038/NCLIMATE2998]
[2]   Impact of delay in reducing carbon dioxide emissions [J].
Allen, Myles R. ;
Stocker, Thomas F. .
NATURE CLIMATE CHANGE, 2014, 4 (01) :23-26
[3]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[4]   Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models [J].
Arora, Vivek K. ;
Boer, George J. ;
Friedlingstein, Pierre ;
Eby, Michael ;
Jones, Chris D. ;
Christian, James R. ;
Bonan, Gordon ;
Bopp, Laurent ;
Brovkin, Victor ;
Cadule, Patricia ;
Hajima, Tomohiro ;
Ilyina, Tatiana ;
Lindsay, Keith ;
Tjiputra, Jerry F. ;
Wu, Tongwen .
JOURNAL OF CLIMATE, 2013, 26 (15) :5289-5314
[5]   Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations [J].
Brovkin, V. ;
Boysen, L. ;
Raddatz, T. ;
Gayler, V. ;
Loew, A. ;
Claussen, M. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (01) :48-57
[6]   CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C [J].
Burke, Eleanor J. ;
Chadburn, Sarah E. ;
Huntingford, Chris ;
Jones, Chris D. .
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (02)
[7]   Quantifying uncertainties of permafrost carbon-climate feedbacks [J].
Burke, Eleanor J. ;
Ekici, Altug ;
Huang, Ye ;
Chadburn, Sarah E. ;
Huntingford, Chris ;
Ciais, Philippe ;
Friedlingstein, Pierre ;
Peng, Shushi ;
Krinner, Gerhard .
BIOGEOSCIENCES, 2017, 14 (12) :3051-3066
[8]   A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions [J].
Burke, Eleanor J. ;
Chadburn, Sarah E. ;
Ekici, Altug .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :959-975
[9]   Global response of terrestrial ecosystem structure and function to CO2 and climate change:: results from six dynamic global vegetation models [J].
Cramer, W ;
Bondeau, A ;
Woodward, FI ;
Prentice, IC ;
Betts, RA ;
Brovkin, V ;
Cox, PM ;
Fisher, V ;
Foley, JA ;
Friend, AD ;
Kucharik, C ;
Lomas, MR ;
Ramankutty, N ;
Sitch, S ;
Smith, B ;
White, A ;
Young-Molling, C .
GLOBAL CHANGE BIOLOGY, 2001, 7 (04) :357-373
[10]   Simulating high-latitude permafrost regions by the JS']JSBACH terrestrial ecosystem model [J].
Ekici, A. ;
Beer, C. ;
Hagemann, S. ;
Boike, J. ;
Langer, M. ;
Hauck, C. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (02) :631-647