A flexible zinc-ion battery based on the optimized concentrated hydrogel electrolyte for enhanced performance at subzero temperature

被引:42
|
作者
Wang, Ying [1 ]
Chen, Yehong [1 ]
机构
[1] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA
关键词
Zinc-ion battery; Flexible battery; Concentrated hydrogel electrolyte; Subzero temperature; Anti-freezing property; RECHARGEABLE BATTERIES; ENERGY-STORAGE; LI;
D O I
10.1016/j.electacta.2021.139178
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The emerging aqueous zinc-ion rechargeable batteries have attracted much attention, owing to their intrinsic safety and low cost. However, it is not practical to use zinc-ion batteries in frigid environments due to their liquid water-based electrolytes. To alleviate this issue, we have developed a flexible zinc-ion battery consisting of an optimized concentrated hydrogel electrolyte sandwiched between an ultrathin zinc anode and a NH4V3O8 center dot 1 center dot 9H(2)O cathode for enhanced performance at subzero temperature. The hydrogel electrolytes, synthesized by simply mixing xanthan gum and aqueous ZnCl2 solution, are examined via various characterizations, such as thermogravimetric analysis, tensile tests, adhesion tests, and impedance measurements, for understanding their fundamental properties. The contents of the xanthan gum and the zinc salt can be facilely tuned and optimized for maximized battery performance. It is found that when a concentrated hydrogel electrolyte is prepared using 1.2 g xanthan gum mixed in 4 m ZnCl2 solution, the resulted flexible battery delivers the best performance, exhibiting a very high capacity of 201 mAh g(-1) and 83 mAh g(-1) under 0.2 A g(-1) at -20 degrees C and -40 degrees C, respectively. The battery also exhibits re-markable cyclability over 1500 cycles at -20 degrees C. Additionally, the battery shows capacity retention of 92% capacity over 100 cycles while being bent by 90 degrees then 180 degrees at -20 degrees C. As such, this battery demonstrates excellent electrochemical performance and mechanical durability/flexibility as well as anti-freezing property, showing high potential to be used to power wearable electronics in cold environments or where safety is most crucial. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Electrochemical Activation of Manganese-Based Cathode in Aqueous Zinc-Ion Electrolyte
    Zhang, Tengsheng
    Tang, Yan
    Fang, Guozhao
    Zhang, Chenyang
    Zhang, Hongliang
    Guo, Xun
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
  • [42] Recent Development of Mn-based Oxides as Zinc-Ion Battery Cathode
    Shi, Wen
    Lee, Wee Siang Vincent
    Xue, Junmin
    CHEMSUSCHEM, 2021, 14 (07) : 1634 - 1658
  • [43] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Ying Guo
    Yang Liu
    Kai Li
    Yun Gong
    Journal of Solid State Electrochemistry, 2023, 27 : 2579 - 2592
  • [44] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Guo, Ying
    Liu, Yang
    Li, Kai
    Gong, Yun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (10) : 2579 - 2592
  • [45] Flexible and Wearable Zinc-Ion Hybrid Supercapacitor Based on Double-Crosslinked Hydrogel for Self-Powered Sensor Application
    Wen, Xi
    Jiang, Kang
    Zhang, Heng
    Huang, Hua
    Yang, Linyu
    Zhou, Zeyan
    Weng, Qunhong
    MATERIALS, 2022, 15 (05)
  • [46] Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries
    Li, Taofeng
    Yan, Suxia
    Dong, Hongyu
    Zheng, Yang
    Ming, Kun
    Chen, Ying
    Li, Haitao
    Li, Guochun
    He, Zhixia
    Li, Weimin
    Wang, Quan
    Song, Xiaohui
    Liu, Junfeng
    Ang, Edison Huixiang
    Wang, Yong
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 1 - 11
  • [47] Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries
    Li, Yang
    Liu, Xiaoxu
    Ji, Tianyi
    Zhang, Man
    Yan, Xueru
    Yao, Mengjie
    Sheng, Dawei
    Li, Shaodong
    Ren, Peipei
    Shen, Zexiang
    CHINESE CHEMICAL LETTERS, 2025, 36 (01)
  • [48] Hydrogel Electrolytes-Based Rechargeable Zinc-Ion Batteries under Harsh Conditions
    Zhaoxi Shen
    Zicheng Zhai
    Yu Liu
    Xuewei Bao
    Yuechong Zhu
    Tong Zhang
    Linsen Li
    Guo Hong
    Ning Zhang
    Nano-Micro Letters, 2025, 17 (1)
  • [49] A Hyperstable Aqueous Zinc-Ion Battery Based on Mo1.74CTz MXene
    Chen, Ningjun
    Ronchi, Rodrigo
    Halim, Joseph
    Persson, Per O. a.
    Qin, Leiqiang
    Rosen, Johanna
    SMALL, 2025,
  • [50] Challenges and Perspectives for Doping Strategy for Manganese-Based Zinc-ion Battery Cathode
    Zhang, Bomian
    Chen, Jinghui
    Sun, Weiyi
    Shao, Yubo
    Zhang, Lei
    Zhao, Kangning
    ENERGIES, 2022, 15 (13)