Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes

被引:3
作者
Bin Hamid, Mohamad Amin [1 ,2 ]
Beh, Hoe Guan [1 ,2 ]
Oluwatobi, Yusuff Afeez [1 ,2 ]
Chew, Xiao Yan [3 ,4 ]
Ayub, Saba [1 ,2 ]
机构
[1] Univ Teknol Petronas, Dept Fundamental & Appl Sci, Seri Iskandar 32610, Perak, Malaysia
[2] Univ Teknol Petronas, Ctr Innovat Nanostruct & Nanodevices, Seri Iskandar 32610, Perak, Malaysia
[3] Pusan Natl Univ, Dept Phys Educ, Busan 46241, South Korea
[4] Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Busan 46241, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 16期
关键词
(n; 2n) nuclear reaction; machine learning; supervised learning; EXCITATION-FUNCTIONS; RATIOS;
D O I
10.3390/app11167359
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, Mo-92 at incident neutron energy around 14 MeV. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (R-2). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of Mo-92 isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with R-2=1 and RMSE =0.33557. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR.
引用
收藏
页数:13
相关论文
共 21 条
[1]   ISOMERIC CROSS-SECTION RATIOS AND TOTAL CROSS SECTIONS FOR 74SE(N,2N)73G,MSE, 90ZR(N,2N)89G,MZR AND 92MO(N,2N)91G,MMO [J].
ABBOUD, A ;
DECOWSKI, P ;
GROCHULS.W ;
MARCINKO.A ;
PIOTROWS.J ;
SIWEK, K ;
WILHELMI, Z .
NUCLEAR PHYSICS A, 1969, A139 (01) :42-&
[2]  
Betak E, 1999, MEAS CALC EVAL PHOT, V31, P134
[3]   Predicting Young's modulus of oxide glasses with sparse datasets using machine learning [J].
Bishnoi, Suresh ;
Singh, Sourabh ;
Ravinder, R. ;
Bauchy, Mathieu ;
Gosvami, Nitya Nand ;
Kodamana, Hariprasad ;
Krishnan, N. M. Anoop .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 524
[4]   Newly developed semi-empirical formulas of nuclear excitation functions for (n, α) reactions at the energy range 12 ≤ En ≤ 20 MeV and mass number range 30 ≤ A ≤ 128 [J].
Bitam, T. ;
Belgaid, M. .
NUCLEAR PHYSICS A, 2019, 991
[5]   (N,2N) EXCITATION-FUNCTIONS FOR FE-54,GE-70,BE-74,RB-85,SR-86,88,Y-89,MO-92 AND HG-204 IN NEUTRON ENERGY REGION 13-18 MEV [J].
BORMANN, M ;
FEDDERSEN, HK ;
HOLSCHER, HH ;
SCOBEL, W ;
WAGENER, H .
ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1976, 277 (02) :203-210
[6]   ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data [J].
Brown, D. A. ;
Chadwick, M. B. ;
Capote, R. ;
Kahler, A. C. ;
Trkov, A. ;
Herman, M. W. ;
Sonzogni, A. A. ;
Danon, Y. ;
Carlson, A. D. ;
Dunn, M. ;
Smith, D. L. ;
Hale, G. M. ;
Arbanas, G. ;
Arcilla, R. ;
Bates, C. R. ;
Beck, B. ;
Becker, B. ;
Brown, F. ;
Casperson, R. J. ;
Conlin, J. ;
Cullen, D. E. ;
Descalle, M. -A. ;
Firestone, R. ;
Gaines, T. ;
Guber, K. H. ;
Hawari, A. I. ;
Holmes, J. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Koning, A. J. ;
Kopecky, S. ;
Leal, L. ;
Lestone, J. P. ;
Lubitz, C. ;
Marquez Damian, J. I. ;
Mattoon, C. M. ;
McCutchan, E. A. ;
Mughabghab, S. ;
Navratil, P. ;
Neudecker, D. ;
Nobre, G. P. A. ;
Noguere, G. ;
Paris, M. ;
Pigni, M. T. ;
Plompen, A. J. ;
Pritychenko, B. ;
Pronyaev, V. G. ;
Roubtsov, D. ;
Rochman, D. .
NUCLEAR DATA SHEETS, 2018, 148 :1-142
[7]   EMPIRE: Nuclear reaction model code system for data evaluation [J].
Herman, M. ;
Capote, R. ;
Carlson, B. V. ;
Oblozinsky, P. ;
Sin, M. ;
Trkov, A. ;
Wienke, H. ;
Zerkin, V. .
NUCLEAR DATA SHEETS, 2007, 108 (12) :2655-2715
[8]   Generation of nuclear data using Gaussian process regression [J].
Iwamoto, Hiroki .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2020, 57 (08) :932-938
[10]   Modern Nuclear Data Evaluation with the TALYS Code System [J].
Koning, A. J. ;
Rochman, D. .
NUCLEAR DATA SHEETS, 2012, 113 (12) :2841-2934