Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes

被引:75
作者
Malshe, A. P. [1 ]
Rajurkar, K. P. [2 ]
Virwani, K. R. [3 ]
Taylor, C. R. [4 ]
Bourell, D. L. [5 ]
Levy, G. [6 ]
Sundaram, M. M. [7 ]
McGeough, J. A. [8 ]
Kalyanasundaram, V. [1 ]
Samant, A. N. [1 ]
机构
[1] Univ Arkansas, Fayetteville, AR 72701 USA
[2] Univ Nebraska, Lincoln, NE USA
[3] IBM Almaden Res Ctr, San Jose, CA USA
[4] Univ Florida, Gainesville, FL USA
[5] Univ Texas Austin, Austin, TX 78712 USA
[6] InspireAG, St Gallen, Switzerland
[7] Univ Cincinnati, Cincinnati, OH USA
[8] Univ Edinburgh, Edinburgh, Midlothian, Scotland
关键词
Manufacturing; Nano manufacturing; Tip-based nano manufacturing; DIP-PEN-NANOLITHOGRAPHY; SCANNING TUNNELING MICROSCOPE; HIGH-ASPECT-RATIO; FOCUSED-ION-BEAM; SURFACE MODIFICATION; FORCE MICROSCOPY; THIN-FILM; DIAMOND TIPS; NANOSCALE DEPOSITION; FIELD-EMISSION;
D O I
10.1016/j.cirp.2010.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanomanufactured products with higher complexities in function, materials, scales and their integration demand an increasing need for advanced manufacturing tools. Iris driven by applications such as ultra-dense memory, individualized biomedicine and drug delivery, molecular reading and sorting, and nanoscale circuitry. The tip-based nanomanufacturing (TBN) platform represents a potent gamut of processes for such applications - performing various nanoscale manufacturing operations including machining, depositing, patterning, and assembling with in situ metrology and visualization. This keynote paper presents a comprehensive overview of TBN processes based upon "nanotool tips" applying electrical, electrochemical, mechanical, electromagnetic and other forces to perform manufacturing operations. (C) 2010 CIRP.
引用
收藏
页码:628 / 651
页数:24
相关论文
共 234 条
[1]   SURFACE MODIFICATION WITH THE SCANNING TUNNELING MICROSCOPE [J].
ABRAHAM, DW ;
MAMIN, HJ ;
GANZ, E ;
CLARKE, J .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1986, 30 (05) :492-499
[2]   DEVICE FOR DIRECT WRITING AND READING-OUT OF INFORMATION BASED ON THE SCANNING TUNNELING MICROSCOPE [J].
ADAMCHUK, VK ;
ERMAKOV, AV .
ULTRAMICROSCOPY, 1992, 45 (01) :1-4
[3]   Growth dynamics of self-assembled monolayers in dip-pen nanolithography [J].
Ahn, Y ;
Hong, S ;
Jang, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4270-4273
[4]   NANOMETER-SCALE HOLE FORMATION ON GRAPHITE USING A SCANNING TUNNELING MICROSCOPE [J].
ALBRECHT, TR ;
DOVEK, MM ;
KIRK, MD ;
LANG, CA ;
QUATE, CF ;
SMITH, DPE .
APPLIED PHYSICS LETTERS, 1989, 55 (17) :1727-1729
[5]  
ALKHALEEL AH, 2006, T NAMRI SME, V34, P437
[6]  
ANON BR, 1952, MACHINERY LONDON, V81, P56
[7]  
[Anonymous], 1960, ENG SCI
[8]   Fabrication of buried metal dot structure in split-gate wire by scanning tunneling microscope [J].
Aoki, N ;
Fukuhara, K ;
Kikutani, T ;
Oki, A ;
Hori, H ;
Yamada, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (6B) :3738-3742
[9]   Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography [J].
Austin, MD ;
Ge, HX ;
Wu, W ;
Li, MT ;
Yu, ZN ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5299-5301
[10]   THEORY OF SCANNING TUNNELING MICROSCOPY METHODS AND APPROXIMATIONS [J].
BARATOFF, A .
PHYSICA B & C, 1984, 127 (1-3) :143-150