Predicting local fish species richness in the Garonne River basin

被引:24
|
作者
Mastrorillo, S
Dauba, F
Oberdorff, T
Guegan, JF
Lek, S
机构
[1] Univ Toulouse 3, Cesac, CNRS, UMR 5576, F-31062 Toulouse, France
[2] INP Ensat, Equipe Environm Aquat & Aquaculture, Lab Ingn Agron, F-31326 Castanet Tolosan, France
[3] Museum Natl Hist Nat, Ichtyol Gen & Appl Lab, F-75231 Paris, France
[4] Univ Montpellier 2, Stn Mediterraneenne Environm Littoral, CNRS, UMR 5556,Orstom, F-34200 Sete, France
关键词
local species richness; fish; Garonne river basin; environmental variables; artificial neural networks;
D O I
10.1016/S0764-4469(98)80307-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this work was to predict local fish species richness in the Garonne river basin using three environmental variables (distance from the source, elevation and catchment area). Commonly, patterns of fish species richness have been investigated using simple or multi-linear statistical models. Here, we used backpropagation of artificial neural networks (ANNs) to develop stochastic models of local fish diversity. Two independent data collections were used, the first one to build and test the model; the second one to validate the model. Correlation coefficients between observed values and predicted values both in the testing and the validation procedures were highly significant (r = 0.904, P < 0.001 and r = 0.822, P < 0.001, respectively). The ANN model obtained using only three environmental variables succeeded in explaining ca 70 % of the total variation in local fish species richness. Through these findings, ANNs can be seen as a powerful predictive tool compared to traditional modelling approaches. ((C) Academie des sciences/Elsevier, Paris.)
引用
收藏
页码:423 / 428
页数:6
相关论文
共 50 条
  • [31] Fish Species Richness in Polish Lakes
    Kalinowska, Krystyna
    Ulikowski, Dariusz
    Traczuk, Piotr
    Kozlowski, Michal
    Kapusta, Andrzej
    DIVERSITY-BASEL, 2023, 15 (02):
  • [32] Population richness of marine fish species
    Sinclair, Michael
    Iles, T. Derrick
    AQUATIC LIVING RESOURCES, 1988, 1 (01) : 71 - 83
  • [33] Distribution and Expansion of Alien Fish Species in the Karun River Basin, Iran
    Shahraki, Mojgan Zare
    Keivany, Yazdan
    Dorche, Eisa Ebrahimi
    Blocksom, Karen
    Bruder, Andreas
    Flotemersch, Joseph
    Banaduc, Doru
    FISHES, 2023, 8 (11)
  • [34] Fish Species Richness in Oxbow Lakes
    Dembkowski, Dan J.
    FISHERIES, 2011, 36 (06) : 295 - 295
  • [35] Alien fish species within Mongolian part of the Selenga River basin
    Manchin E.
    Dgebuadze Y.
    Russian Journal of Biological Invasions, 2010, 1 (3) : 227 - 231
  • [36] The fish fauna of Anambra river basin, Nigeria: species abundance and morphometry
    Odo, Gregory Ejikeme
    Didigwu, Nwani Christopher
    Eyo, Joseph Effiong
    REVISTA DE BIOLOGIA TROPICAL, 2009, 57 (1-2) : 177 - 186
  • [37] Use of the weather radar for flood forecasting in the higher basin of the Garonne river
    Cornuau, P
    Vidal, JJ
    Roy, JL
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2002, (02): : 60 - 63
  • [38] The Effects of Sampling-Site Intervals on Fish Species Richness in Wadeable Rivers: A Case Study from Taizi River Basin, Northeastern China
    Yu, Mingqiao
    Li, Zhao
    Zhao, Qian
    Ding, Sen
    DIVERSITY-BASEL, 2024, 16 (06):
  • [39] Hydrological sensitivity of the Adour-Garonne river basin to climate change
    Caballero, Yvan
    Voirin-Morel, Sophie
    Habets, Florence
    Noilhan, Joel
    LeMoigne, Patrick
    Lehenaff, Alain
    Boone, Aaron
    WATER RESOURCES RESEARCH, 2007, 43 (07)
  • [40] PREDICTING CRUSTACEAN ZOOPLANKTON SPECIES RICHNESS
    DODSON, S
    LIMNOLOGY AND OCEANOGRAPHY, 1992, 37 (04) : 848 - 856