Physiological and biochemical responses of almond rootstocks to drought stress

被引:9
|
作者
Yildirim, Adnan Nurhan [1 ]
San, Bekir [1 ]
Yildirim, Fatma [1 ]
Celik, Civan [2 ]
Bayar, Berna [1 ]
Karakurt, Yasar [2 ]
机构
[1] Isparta Univ Appl Sci, Dept Hort, Fac Agr, Isparta, Turkey
[2] Isparta Univ Appl Sci, Dept Agr Biotechnol, Fac Agr, Isparta, Turkey
关键词
Prunus amygdalus; almond; seedling; total phenolic substance; total flavonoid; proline content; VITIS-VINIFERA L; OXIDATIVE STRESS; SALT STRESS; PROLINE ACCUMULATION; PLANT-RESPONSES; TOLERANCE; ANTIOXIDANTS; CHLOROPHYLL; METABOLISM; LEAVES;
D O I
10.3906/tar-2010-47
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Water availability is a very important factor for the growth and development of plants, which limits the plant production capacity. Rootstocks are widely utilized to improve plants tolerance to various biotic and abiotic stresses. In this study, physiological and biochemical responses of fifteen almond rootstock candidates to drought stress were investigated under in vitro conditions. The shoot tips from fifteen almond rootstock candidates were cultured in MS medium containing 1.0 mg/L BAP, 0.01 mg/L IBA, 30 g/L sucrose and 7 g/L agar. Plantlets were exposed to 0%, 1% and 2% polyethyleneglycol (PEG) as drought stress levels during four weeks. At the end of the stress period, the genotypes were evaluated in terms of total number of shoots per explant, the proline, chlorophyll, total phenolics, total flavonoids and total protein contents, and the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) enzyme activities of the shoots were determined. The results showed that the drought stress increased total Ilavanoids, phenolic compounds and proline contents, while it reduced the number of shoots, chlorphyll a, b and total chlorophyll contents. Moreover, the drought stress increased the activities of APX, CAT and SOD enzymes in all genotypes. On the other hand, it decreased the protein content in six genotypes but increased the protein content in the nine genotypes. Based on the results, it was observed that the almond genotypes were generally tolerant to the drought. However, it was determined that the genotypes numbered 9, 29 and 185 showed more tolerant to the drought as compared to the other genotypes. These results suggest that improving the antioxidant system can enhance the drought tolerance of rootstocks.
引用
收藏
页码:522 / 532
页数:11
相关论文
共 50 条
  • [21] Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley
    Mian Zhang
    Zhu-Qun Jin
    Jing Zhao
    Guoping Zhang
    Feibo Wu
    Plant Growth Regulation, 2015, 75 : 567 - 574
  • [22] Physiological, biochemical, and metabolic responses of abiotic plant stress: salinity and drought
    Goharrizi, Kiarash Jamshidi
    Hamblin, Michael R.
    Karami, Soraya
    Nazari, Maryam
    TURKISH JOURNAL OF BOTANY, 2021, 45 (01) : 623 - 642
  • [23] Physiological and biochemical responses to drought stress in some autochthonous grapevines of Turkey
    Koc, M.
    Kamiloglu, O.
    Cangi, R.
    Yildiz, K.
    PROCEEDINGS OF THE XII INTERNATIONAL CONFERENCE ON GRAPEVINE BREEDING AND GENETICS, 2019, 1248 : 531 - 539
  • [24] Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley
    Zhang, Mian
    Jin, Zhu-Qun
    Zhao, Jing
    Zhang, Guoping
    Wu, Feibo
    PLANT GROWTH REGULATION, 2015, 75 (02) : 567 - 574
  • [25] Salinity and drought stress in plants: understanding physiological, biochemical and molecular responses
    Waseem, Muhammad
    Liu, Pingwu
    Aslam, Mehtab Muhammad
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [26] Physiological and Biochemical Responses of Two Herbaceous Peony Cultivars to Drought Stress
    Wang, Qi
    Zhao, Rui
    Chen, Qihang
    Teixeira da Silva, Jaime A.
    Chen, Liqi
    Yu, Xiaonan
    HORTSCIENCE, 2019, 54 (03) : 492 - 498
  • [27] An integrated overview of physiological and biochemical responses of Celtis australis to drought stress
    Brunetti, Cecilia
    Tattini, Massimiliano
    Guidi, Lucia
    Velikova, Violeta
    Ferrini, Francesco
    Fini, Alessio
    URBAN FORESTRY & URBAN GREENING, 2019, 46
  • [28] Morphological Structure and Physiological and Biochemical Responses to Drought Stress of Iris japonica
    Yu, Xiaofang
    Liu, Yujia
    Cao, Panpan
    Zeng, Xiaoxuan
    Xu, Bin
    Luo, Fuwen
    Yang, Xuan
    Wang, Xiantong
    Wang, Xiaoyu
    Xiao, Xue
    Yang, Lijuan
    Lei, Ting
    PLANTS-BASEL, 2023, 12 (21):
  • [29] Study of Bread Wheat Genotype Physiological and Biochemical Responses to Drought Stress
    Gholamin, Roza
    Khayatnezhad, Majid
    HELIX, 2020, 10 (05): : 87 - 92
  • [30] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES IN SOME ALMOND (PRUNUS AMYGDALUS BATSCH.) GENOTYPES (GRAFTED ON/GN15) SUBMITTED TO DROUGHT STRESS
    Fathi, Hossein
    Esmailamiri, Mohammad
    Imani, Ali
    Hajilou, Jafar
    Nikbakht, Jafar
    PAKISTAN JOURNAL OF BOTANY, 2018, 50 (04) : 1281 - 1289