Adaptive density estimation based on real and artificial data

被引:6
|
作者
Felber, Tina [1 ]
Kohler, Michael [1 ]
Krzyzak, Adam [2 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
nonparametric regression; density estimation; rate of convergence; adaptation; L-1-error; OPTIMAL GLOBAL RATES; NONPARAMETRIC REGRESSION; CONVERGENCE; EQUIVALENCE; CONSISTENCY; L1;
D O I
10.1080/10485252.2014.969729
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X, X-1, X-2, horizontal ellipsis be independent and identically distributed Double-struck capital R-d-valued random variables and let m:Double-struck capital R-d -> Double-struck capital R be a measurable function such that a density f of Y=m(X) exists. The problem of estimating f based on a sample of the distribution of (X,Y) and on additional independent observations of X is considered. Two kernel density estimates are compared: the standard kernel density estimate based on the y-values of the sample of (X,Y), and a kernel density estimate based on artificially generated y-values corresponding to the additional observations of X. It is shown that under suitable smoothness assumptions on f and m the rate of convergence of the L-1 error of the latter estimate is better than that of the standard kernel density estimate. Furthermore, a density estimate defined as convex combination of these two estimates is considered and a data-driven choice of its parameters (bandwidths and weight of the convex combination) is proposed and analysed.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Estimation of a Density Using Real and Artificial Data
    Devroye, Luc
    Felber, Tina
    Kohler, Michael
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (03) : 1917 - 1928
  • [2] Density Estimation Using Real and Artificial Data
    Felber, Tina
    Kohler, Michael
    Krzyzak, Adam
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1677 - 1681
  • [3] Adaptive Density Estimation From Data With Small Measurement Errors
    Felber, Tina
    Kohler, Michael
    Krzyzak, Adam
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3446 - 3456
  • [4] Smoothing spline regression estimation based on real and artificial data
    Furer, Dmytro
    Kohler, Michael
    METRIKA, 2015, 78 (06) : 711 - 746
  • [5] Fixed-design regression estimation based on real and artificial data
    Furer, Dmytro
    Kohler, Michael
    Krzyzak, Adam
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (01) : 223 - 241
  • [6] Estimation of a density in a simulation model
    Bott, Ann-Kathrin
    Felber, Tina
    Kohler, Michael
    JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (03) : 271 - 285
  • [7] Smoothing spline regression estimation based on real and artificial data
    Dmytro Furer
    Michael Kohler
    Metrika, 2015, 78 : 711 - 746
  • [8] CONFIDENCE BANDS IN DENSITY ESTIMATION
    Gine, Evarist
    Nickl, Richard
    ANNALS OF STATISTICS, 2010, 38 (02) : 1122 - 1170
  • [9] On density and regression estimation with incomplete data
    Mojirsheibani, Majid
    Manley, Kevin
    Pouliot, William
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11688 - 11711
  • [10] ADAPTIVE BAYESIAN ESTIMATION USING A GAUSSIAN RANDOM FIELD WITH INVERSE GAMMA BANDWIDTH
    van der Vaart, A. W.
    van Zanten, J. H.
    ANNALS OF STATISTICS, 2009, 37 (5B) : 2655 - 2675