Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

被引:9
作者
Chen, Shanzhen [1 ]
Jiang, Xiaoyun [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional partial differential equation; Multi-layer annulus; Finite integral transform; Mittag-Leffler function; TRANSIENT ANALYTICAL SOLUTION; HEAT-CONDUCTION; ANOMALOUS DIFFUSION; RADIAL DIFFUSION; CYLINDER;
D O I
10.1016/j.physa.2012.03.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, analytical solutions to time-fractional partial differential equations in a multilayer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (alpha = 1), the Helmholtz equation (alpha -> 0) and the wave equation (alpha = 2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3865 / 3874
页数:10
相关论文
共 22 条
[1]   Fractional radial diffusion in a cylinder [J].
Achar, BNN ;
Hanneken, JW .
JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) :147-151
[2]   Decay of a potential vortex in a generalized Oldroyd-B fluid [J].
Fetecau, Corina ;
Fetecau, C. ;
Khan, M. ;
Vieru, D. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :497-506
[3]   The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems [J].
Jiang, Xiaoyun ;
Xu, Mingyu .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (17) :3368-3374
[4]   Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media [J].
Jiang, XY ;
Yu, XM .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (01) :156-165
[5]   Some results for a fractional diffusion equation with radial symmetry in a confined region [J].
Lenzi, E. K. ;
da Silva, L. R. ;
Silva, A. T. ;
Evangelista, L. R. ;
Lenzi, M. K. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (06) :806-810
[6]   Fractional diffusion equation and Green function approach:: Exact solutions [J].
Lenzi, EK ;
Mendes, RS ;
Gonçalves, G ;
Lenzi, MK ;
da Silva, LR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 360 (02) :215-226
[7]   Transient analytical solution to heat conduction in multi-dimensional composite cylinder slab [J].
Lu, X ;
Tervola, P ;
Vjanen, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (5-6) :1107-1114
[8]   Transient analytical solution to heat conduction in composite circular cylinder [J].
Lu, X ;
Tervola, P ;
Viljanen, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (1-2) :341-348
[9]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[10]   Fractional diffusion-wave problem in cylindrical coordinates [J].
Ozdemir, Necati ;
Karadeniz, Derya .
PHYSICS LETTERS A, 2008, 372 (38) :5968-5972