A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration

被引:35
作者
Abubakar, Auwal Bala [1 ,2 ]
Kumam, Poom [1 ,3 ,4 ]
Mohammad, Hassan [2 ]
Awwal, Aliyu Muhammed [1 ,5 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, KMUTTFixed Point Res Lab,KMUTT Fixed Point Theory, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Bayero Univ, Fac Phys Sci, Dept Math Sci, Kano, Nigeria
[3] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence, Theoret & Computat Sci Ctr TaCS CoE, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Gombe State Univ, Fac Sci, Dept Math, Gombe, Nigeria
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2020年 / 357卷 / 11期
关键词
THRESHOLDING ALGORITHM; EQUATIONS; RECONSTRUCTION; RECOVERY; DESCENT; SYSTEMS;
D O I
10.1016/j.jfranklin.2020.04.022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Barzilai-Borwein gradient method using the hyperplane projection technique of Solodov and Svaiter (1998) for solving the non-smooth nonlinear monotone equation arising from the reformula-tion of the l(1) -norm regularized problem. The proposed method is an extension of the modified method by Liu and Duan (J. Inequal. Appl. 2015(1), 8, 2015) for solving signal and image restoration problems. The method is derivative-free and its search direction satisfies the sufficient descent condition. Numerical experiments presented show that the proposed method can recover sparse signals in fewer iterations and less CPU time and can reconstruct blurred images with higher quality compared to similar methods in the literature. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7266 / 7285
页数:20
相关论文
共 40 条
[1]   An Efficient Conjugate Gradient Method for Convex Constrained Monotone Nonlinear Equations with Applications [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan ;
Awwal, Aliyu Muhammed .
MATHEMATICS, 2019, 7 (09)
[2]   A Modified Self-Adaptive Conjugate Gradient Method for Solving Convex Constrained Monotone Nonlinear Equations for Signal Recovery Problems [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Awwal, Aliyu Muhammed ;
Thounthong, Phatiphat .
MATHEMATICS, 2019, 7 (08)
[3]   A Modified Fletcher-Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan ;
Awwal, Aliyu Muhammed ;
Sitthithakerngkiet, Kanokwan .
MATHEMATICS, 2019, 7 (08)
[4]   An iterative framework for sparse signal reconstruction algorithms [J].
Ambat, Sooraj K. ;
Hari, K. V. S. .
SIGNAL PROCESSING, 2015, 108 :351-364
[5]  
[Anonymous], 1993, TECHNICAL REPORT
[6]   A modified conjugate gradient method for monotone nonlinear equations with convex constraints [J].
Awwal, Aliyu Muhammed ;
Kumam, Poom ;
Abubakara, Auwal Bala .
APPLIED NUMERICAL MATHEMATICS, 2019, 145 :507-520
[7]   Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping blocks and Chamfer distance [J].
Bahaoui, Zaineb ;
El Fadili, Hakim ;
Zenkouar, Khalid ;
Zarghili, Arsalane .
SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (07) :1313-1320
[8]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[9]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[10]  
Chen C, 2011, CONF REC ASILOMAR C, P1193, DOI 10.1109/ACSSC.2011.6190204