Model fractional quantum Hall states and Jack polynomials

被引:251
作者
Bernevig, B. Andrei [1 ,2 ]
Haldane, F. D. M. [2 ]
机构
[1] Princeton Ctr Theoret Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.100.246802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe an occupation-number-like picture of fractional quantum Hall states in terms of polynomial wave functions characterized by a dominant occupation-number configuration. The bosonic variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a "squeezing rule" that constrains allowed configurations to be restricted to those obtained by squeezing the dominant configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be determined to which actual experimental fractional quantum Hall effect states they apply.
引用
收藏
页数:4
相关论文
共 21 条
[1]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[2]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[3]   Generalized clustering conditions of Jack polynomials at negative Jack parameter α [J].
Bernevig, B. Andrei ;
Haldane, E. D. M. .
PHYSICAL REVIEW B, 2008, 77 (18)
[4]   CRITICAL-BEHAVIOR AND ASSOCIATED CONFORMAL ALGEBRA OF THE Z3 POTTS-MODEL [J].
DOTSENKO, VS .
NUCLEAR PHYSICS B, 1984, 235 (01) :54-74
[5]  
FEIGIN B, 2002, INT MATH RES NOTICES, P2002
[6]   PAIRED HALL STATES [J].
GREITER, M ;
WEN, XG ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1992, 374 (03) :567-614
[8]  
HALDANE FDM, 2006, B AM PHYS SOC, V51, P633
[9]   COMPOSITE-FERMION APPROACH FOR THE FRACTIONAL QUANTUM HALL-EFFECT [J].
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :199-202
[10]  
KASATANI M, ARXIVCONDMAT0608160