Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

被引:40
作者
Hu, Minglei [1 ]
Liu, Yuhao [1 ]
Zhang, Min [1 ]
Wei, Helin [1 ]
Gao, Yihua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
关键词
Buffer layer; Wire-type supercapacitor; MnO2; Flexibility; Chemical bath deposition; SOLID-STATE SUPERCAPACITORS; WEARABLE ENERGY-STORAGE; CARBON NANOTUBE FIBERS; SELF-POWERED SYSTEMS; ASYMMETRIC SUPERCAPACITORS; FLEXIBLE SUPERCAPACITORS; ARRAYS; FILM; FABRICATION; NANOSHEETS;
D O I
10.1016/j.jpowsour.2016.10.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm(-1) (73.2 mF cm(-2), 9.8 F cm(-3)). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 1 mu Wh cm(-1) (0.88 mWh cm(-3)). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 48 条
[1]  
[Anonymous], ABSTR APPL AN
[2]   Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance [J].
Bai, Yaocai ;
Rakhi, R. B. ;
Chen, Wei ;
Alshareef, H. N. .
JOURNAL OF POWER SOURCES, 2013, 233 :313-319
[3]   Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability [J].
Cheng, Tao ;
Zhang, Yizhou ;
Lai, Wen-Yong ;
Huang, Wei .
ADVANCED MATERIALS, 2015, 27 (22) :3349-3376
[4]   Carbon Nanomaterials for Flexible Energy Storage [J].
Cheng, Yingwen ;
Liu, Jie .
MATERIALS RESEARCH LETTERS, 2013, 1 (04) :175-192
[5]   Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors [J].
Choi, Changsoon ;
Kim, Shi Hyeong ;
Sim, Hyeon Jun ;
Lee, Jae Ah ;
Choi, A. Young ;
Kim, Youn Tae ;
Lepro, Xavier ;
Spinks, Geoffrey M. ;
Baughman, Ray H. ;
Kim, Seon Jeong .
SCIENTIFIC REPORTS, 2015, 5
[6]   Integrated power fiber for energy conversion and storage [J].
Fu, Yongping ;
Wu, Hongwei ;
Ye, Shuyang ;
Cai, Xin ;
Yu, Xiao ;
Hou, Shaocong ;
Kafafy, Hanny ;
Zou, Dechun .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :805-812
[7]   Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage [J].
Fu, Yongping ;
Cai, Xin ;
Wu, Hongwei ;
Lv, Zhibin ;
Hou, Shaocong ;
Peng, Ming ;
Yu, Xiao ;
Zou, Dechun .
ADVANCED MATERIALS, 2012, 24 (42) :5713-5718
[8]   CuCo2O4 Nanowires Grown on a Ni Wire for High-Performance, Flexible Fiber Supercapacitors [J].
Gu, Shaosong ;
Lou, Zheng ;
Ma, Xiangdong ;
Shen, Guozhen .
CHEMELECTROCHEM, 2015, 2 (07) :1042-1047
[9]   Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors [J].
Gu, Taoli ;
Wei, Bingqing .
NANOSCALE, 2015, 7 (27) :11626-11632
[10]   From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles [J].
Huang, Yan ;
Hu, Hong ;
Huang, Yang ;
Zhu, Minshen ;
Meng, Wenjun ;
Liu, Chang ;
Pei, Zengxia ;
Hao, Chonglei ;
Wang, Zuankai ;
Zhi, Chunyi .
ACS NANO, 2015, 9 (05) :4766-4775