An invariance principle for the two-dimensional parabolic Anderson model with small potential

被引:14
作者
Chouk, Khalil [1 ]
Gairing, Jan [1 ]
Perkowski, Nicolas [1 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2017年 / 5卷 / 04期
关键词
Parabolic Anderson model; Random polymer measure; Random Schrodinger operator; Invariance principle; Paracontrolled distributions; ASYMPTOTICS; EIGENVALUE; EQUATIONS;
D O I
10.1007/s40072-017-0096-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an invariance principle for the two-dimensional lattice parabolic Anderson model with small potential. As applications we deduce a Donsker type convergence result for a discrete random polymer measure, as well as a universality result for the spectrum of discrete random Schrodinger operators on large boxes with small potentials. Our proof is based on paracontrolled distributions and some basic results for multiple stochastic integrals of discrete martingales.
引用
收藏
页码:520 / 558
页数:39
相关论文
共 41 条
[1]   THE INTERMEDIATE DISORDER REGIME FOR DIRECTED POLYMERS IN DIMENSION 1+1 [J].
Alberts, Tom ;
Khanin, Konstantin ;
Quastel, Jeremy .
ANNALS OF PROBABILITY, 2014, 42 (03) :1212-1256
[2]  
Allez R., 2015, ARXIV151102718
[3]  
[Anonymous], 1997, Cambridge Tracts in Mathematics
[4]  
[Anonymous], 2016, PATHWAYS MATH 11, DOI DOI 10.1007/978-3-319-33596-4
[5]   Heat semigroup and singular PDEs [J].
Bailleul, I. ;
Bernicot, F. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (09) :3344-3452
[6]  
Bailleul I., 2015, ARXIV150608773
[7]   EIGENVALUE FLUCTUATIONS FOR LATTICE ANDERSON HAMILTONIANS [J].
Biskup, Marek ;
Fukushima, Ryoki ;
Konig, Wolfgang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (04) :2674-2700
[8]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[9]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[10]  
Bruned Y., 2015, THESIS