Distributionally chaotic translation semigroups

被引:24
作者
Barrachina, Xavier [1 ]
Peris, Alfred [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, Dept Matemat Aplicada, IUMPA, E-46022 Valencia, Spain
关键词
distributional chaos; C-0-semigroups; translation C-0-semigroup; backward shift operator;
D O I
10.1080/10236198.2011.625945
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study distributional chaos for the translation C-0-semigroup on weighted L-p-spaces. Some sufficient conditions for distributional chaos expressed in terms of the weight are given. Moreover, we establish a complete analogy between the study on distributional chaos for the translation C-0-semigroup and the corresponding one for backward shifts on weighted sequence spaces.
引用
收藏
页码:751 / 761
页数:11
相关论文
共 22 条
[1]  
Albanese A., DISTRIBUTIONAL CHAOS
[2]   The three versions of distributional chaos [J].
Balibrea, F ;
Smítal, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1581-1583
[3]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[4]  
Bayart F., 2009, CAMB TRACT MATH, V179
[5]   Semigroups of chaotic operators [J].
Bayart, Frederic ;
Bermudez, Teresa .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :823-830
[6]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[7]   Li-Yorke and distributionally chaotic operators [J].
Bermudez, T. ;
Bonilla, A. ;
Martinez-Gimenez, F. ;
Peris, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :83-93
[8]   Hypercyclic behaviour of operators in a hypercyclic C0-semigroup [J].
Conejero, Jose A. ;
Muller, V. ;
Peris, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :342-348
[9]   HYPERCYCLIC TRANSLATION C0-SEMIGROUPS ON COMPLEX SECTORS [J].
Conejero, Jose A. ;
Peris, Alfredo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (04) :1195-1208
[10]  
DeLaubenfels R, 2001, ERGOD THEOR DYN SYST, V21, P1411