Refining oscillatory signals by non-stationary subdivision schemes

被引:0
|
作者
Dyn, N [1 ]
Levin, D [1 ]
Luzzatto, A [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION | 2003年 / 145卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a method for refining real highly oscillatory signals. The method is based upon interpolation by a finite set of trigonometric basis functions. The set of trigonometric functions is chosen (identified) by minimizing a natural error norm in the Fourier domain. Both the identification and the refining processes are computed by linear operations. Unlike the Yule-Walker approach, and related algorithms, the identification of the approximating trigonometric space is not repeated for every new input signal. It is rather computed off-line for a family of signals with the same support of their Fourier transform, while the refinement calculations are done in real-time. Statistical estimates of the point-wise errors are derived, and numerical examples are presented.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 50 条
  • [31] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Li, Bao-jun
    Yu, Zhi-ling
    Yu, Bo-wen
    Su, Zhi-xun
    Liu, Xiu-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 567 - 578
  • [32] Non-stationary subdivision for exponential polynomials reproduction
    Bao-jun Li
    Zhi-ling Yu
    Bo-wen Yu
    Zhi-xun SU
    Xiu-ping Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 567 - 578
  • [33] Enhancing Missing Data Imputation of Non-Stationary Oscillatory Signals With Harmonic Decomposition
    Ruiz, Joaquin
    Wu, Hau-Tieng
    Colominas, Marcelo A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5581 - 5592
  • [34] FILTERING NON-STATIONARY SIGNALS
    ABDRABBO, NA
    PRIESTLE.MB
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1969, 31 (01) : 150 - &
  • [35] Stationary and non-stationary oscillatory dynamics of the parametric pendulum
    Kovaleva, Margarita
    Manevitch, Leonid
    Romeo, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 : 1 - 11
  • [36] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    Fakhar, R.
    Lamnii, A.
    Nour, M. -Y.
    Zidna, A.
    MATHEMATICAL SCIENCES, 2022, 16 (02) : 149 - 162
  • [37] Ternary three point non-stationary subdivision scheme
    Siddiqi, Shahid S.
    Younis, Muhammad
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (13) : 1875 - 1882
  • [38] A novel non-stationary subdivision scheme for geometric modeling
    Chen, FQ
    Ding, YD
    Liu, J
    Wei, DM
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2004, : 748 - 752
  • [39] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    R. Fakhar
    A. Lamnii
    M. -Y. Nour
    A. Zidna
    Mathematical Sciences, 2022, 16 : 149 - 162
  • [40] A Hybrid Non-Stationary Subdivision Scheme Based on Triangulation
    Jena H.
    Jena M.K.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)