Refining oscillatory signals by non-stationary subdivision schemes

被引:0
|
作者
Dyn, N [1 ]
Levin, D [1 ]
Luzzatto, A [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION | 2003年 / 145卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a method for refining real highly oscillatory signals. The method is based upon interpolation by a finite set of trigonometric basis functions. The set of trigonometric functions is chosen (identified) by minimizing a natural error norm in the Fourier domain. Both the identification and the refining processes are computed by linear operations. Unlike the Yule-Walker approach, and related algorithms, the identification of the approximating trigonometric space is not repeated for every new input signal. It is rather computed off-line for a family of signals with the same support of their Fourier transform, while the refinement calculations are done in real-time. Statistical estimates of the point-wise errors are derived, and numerical examples are presented.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 50 条
  • [21] A family of 4-point odd-ary non-stationary subdivision schemes
    Mustafa G.
    Ashraf P.
    SeMA Journal, 2015, 67 (1) : 77 - 91
  • [22] Construction of a family of non-stationary combined ternary subdivision schemes reproducing exponential polynomials
    Zhang, Zeze
    Zheng, Hongchan
    Pan, Lulu
    OPEN MATHEMATICS, 2021, 19 (01): : 909 - 926
  • [23] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Maria Charina
    Costanza Conti
    Lucia Romani
    Numerische Mathematik, 2014, 127 : 223 - 254
  • [24] A new class of 2m-point binary non-stationary subdivision schemes
    Abdul Ghaffar
    Zafar Ullah
    Mehwish Bari
    Kottakkaran Sooppy Nisar
    Maysaa M. Al-Qurashi
    Dumitru Baleanu
    Advances in Difference Equations, 2019
  • [25] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Charina, Maria
    Conti, Costanza
    Romani, Lucia
    NUMERISCHE MATHEMATIK, 2014, 127 (02) : 223 - 254
  • [26] α-B-splines non-stationary subdivision schemes for grids of arbitrary topology design
    Barrera, D.
    Lamnii, A.
    Nour, M-Y
    Zidna, A.
    COMPUTERS & GRAPHICS-UK, 2022, 108 : 34 - 48
  • [27] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Baojun LI
    Zhiling YU
    Bowen YU
    Zhixun SU
    Xiuping LIU
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 567 - 578
  • [28] Regularity of non-stationary subdivision: a matrix approach
    M. Charina
    C. Conti
    N. Guglielmi
    V. Protasov
    Numerische Mathematik, 2017, 135 : 639 - 678
  • [29] Regularity of non-stationary subdivision: a matrix approach
    Charina, M.
    Conti, C.
    Guglielmi, N.
    Protasov, V.
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 639 - 678
  • [30] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Bao-jun LI
    Zhi-ling YU
    Bo-wen YU
    Zhi-xun SU
    Xiu-ping LIU
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 567 - 578