Asymptotic Decomposition for Nonlinear Damped Klein-Gordon Equations

被引:3
作者
Li, Ze [1 ]
Zhao, Lifeng [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2020年 / 53卷 / 03期
关键词
Nonlinear Klein-Gordon equations; damping; soliton resolution; global attractor; LARGE ENERGY SOLUTIONS; WAVE-EQUATION; ATTRACTOR; EXTERIOR; DYNAMICS; MAPS;
D O I
10.4208/jms.v53n3.20.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that if the solution to the damped focusing Klein-Gordon equations is global forward in time with bounded trajectory, then it will decouple into the superposition of divergent equilibriums. The core ingredient of our proof is the existence of the "concentration-compact attractor" introduced by Tao which yields a finite number of asymptotic profiles. Using the damping effect, we can prove all the profiles are equilibrium points.
引用
收藏
页码:329 / 352
页数:24
相关论文
共 34 条
[1]  
[Anonymous], 1994, DYNAM SYST APPL
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
Burq N, ARXIV150505981
[4]   UNIFORM ESTIMATES FOR SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS [J].
CAZENAVE, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 60 (01) :36-55
[5]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[6]  
Côte R, 2015, AM J MATH, V137, P139, DOI 10.1353/ajm.2015.0002
[7]   CHARACTERIZATION OF LARGE ENERGY SOLUTIONS OF THE EQUIVARIANT WAVE MAP PROBLEM: II [J].
Cote, R. ;
Kenig, C. E. ;
Lawrie, A. ;
Schlag, W. .
AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (01) :209-250
[8]  
Cote R, ARXIV161202625
[9]  
Cote R., ARXIV14022307
[10]   On the Soliton Resolution for Equivariant Wave Maps to the Sphere (vol 68, pg 1946, 2015) [J].
Cote, Raphael .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (04) :609-612