Eurasian oystercatcher optimiser: New meta-heuristic algorithm

被引:35
作者
Salim, Ahmad [1 ]
Jummar, Wisam K. [2 ]
Jasim, Farah Maath [2 ]
Yousif, Mohammed [3 ]
机构
[1] Middle Tech Univ, Baghdad, Iraq
[2] Univ Anbar, Anbar, Iraq
[3] Minist Youth & Sport, Anbar, Iraq
关键词
meta-heuristic; optimisation; Eurasian oystercatcher optimiser; Eurasian oystercatcher;
D O I
10.1515/jisys-2022-0017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern optimisation is increasingly relying on meta-heuristic methods. This study presents a new meta-heuristic optimisation algorithm called Eurasian oystercatcher optimiser (EOO). The EOO algorithm mimics food behaviour of Eurasian oystercatcher (EO) in searching for mussels. In EOO, each bird (solution) in the population acts as a search agent. The EO changes the candidate mussel according to the best solutions to finally eat the best mussel (optimal result). A balance must be achieved among the size, calories, and energy of mussels. The proposed algorithm is benchmarked on 58 test functions of three phases (unimodal, multimodal, and fixed-diminution multimodal) and compared with several important algorithms as follows: particle swarm optimiser, grey wolf optimiser, biogeography based optimisation, gravitational search algorithm, and artificial bee colony. Finally, the results of the test functions prove that the proposed algorithm is able to provide very competitive results in terms of improved exploration and exploitation balances and local optima avoidance.
引用
收藏
页码:332 / 344
页数:13
相关论文
共 24 条
[1]   Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019) [J].
Agrawal, Prachi ;
Abutarboush, Hattan F. ;
Ganesh, Talari ;
Mohamed, Ali Wagdy .
IEEE ACCESS, 2021, 9 :26766-26791
[2]  
Basturk B., 2006, ARTIFICIAL BEE COLON
[3]  
Beheshti Z., 2013, Int. J. Adv. Soft Comput. Appl., V5, P1
[4]   SECONDARY PRODUCTION OF AN INTERTIDAL MUSSEL (MYTILUS-EDULIS-L) POPULATION IN THE EASTERN SCHELDT (SW NETHERLANDS) [J].
CRAEYMEERSCH, JA ;
HERMAN, PMJ ;
MEIRE, PM .
HYDROBIOLOGIA, 1986, 133 (02) :107-115
[5]   A New "Doctor and Patient" Optimization Algorithm: An Application to Energy Commitment Problem [J].
Dehghani, Mohammad ;
Mardaneh, Mohammad ;
Guerrero, Josep M. ;
Malik, Om Parkash ;
Ramirez-Mendoza, Ricardo A. ;
Matas, Jose ;
Vasquez, Juan C. ;
Parra-Arroyo, Lizeth .
APPLIED SCIENCES-BASEL, 2020, 10 (17)
[6]   Ant colony optimization -: Artificial ants as a computational intelligence technique [J].
Dorigo, Marco ;
Birattari, Mauro ;
Stuetzle, Thomas .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (04) :28-39
[7]   Marine Predators Algorithm: A nature-inspired metaheuristic [J].
Faramarzi, Afshin ;
Heidarinejad, Mohammad ;
Mirjalili, Seyedali ;
Gandomi, Amir H. .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 152
[8]   Red deer algorithm (RDA): a new nature-inspired meta-heuristic [J].
Fathollahi-Fard, Amir Mohammad ;
Hajiaghaei-Keshteli, Mostafa ;
Tavakkoli-Moghaddam, Reza .
SOFT COMPUTING, 2020, 24 (19) :14637-14665
[9]   Black hole: A new heuristic optimization approach for data clustering [J].
Hatamlou, Abdolreza .
INFORMATION SCIENCES, 2013, 222 :175-184
[10]   GENETIC ALGORITHMS [J].
HOLLAND, JH .
SCIENTIFIC AMERICAN, 1992, 267 (01) :66-72