Expansion for moments of regression quantiles with applications to nonparametric testing

被引:2
作者
Mammen, Enno [1 ]
Van Keilegom, Ingrid [2 ]
Yu, Kyusang [3 ]
机构
[1] Heidelberg Univ, Inst Angew Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Katholieke Univ Leuven, ORSTAT, Naamsestr 69, B-3000 Leuven, Belgium
[3] Konkuk Univ, Dept Appl Stat, Seoul 143701, South Korea
基金
欧洲研究理事会;
关键词
Bahadur expansions; goodness-of-fit tests; kernel smoothing; nonparametric regression; nonparametric testing; quantiles; OF-FIT TEST; BAHADUR REPRESENTATION; STATISTICS; MODELS; MISSPECIFICATION; DERIVATIVES; ESTIMATORS; LINEARITY; INFERENCE;
D O I
10.3150/17-BEJ986
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya- Watson quantile smoothing estimator. An asymptotic treatment of the test statistic requires the development of new mathematical arguments. An approach that makes only use of plugging in a Bahadur expansion of the nonparametric estimator is not satisfactory. It requires too strong conditions on the dimension and the choice of the bandwidth. Our alternative mathematical approach requires the calculation of moments of Nadaraya-Watson quantile regression estimators. This calculation is done by application of higher order Edgeworth expansions.
引用
收藏
页码:793 / 827
页数:35
相关论文
共 45 条
  • [1] Nonparametric Transition-Based Tests for Jump Diffusions
    Ait-Sahalia, Yacine
    Fan, Jianqing
    Peng, Heng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1102 - 1116
  • [2] Quantile regression under misspecification, with an application to the US wage structure
    Angrist, J
    Chernozhukov, V
    Fernández-Val, I
    [J]. ECONOMETRICA, 2006, 74 (02) : 539 - 563
  • [3] Bhattacharya R. N., 1976, WILEY SERIES PROBABI
  • [4] Bierens H.J., 2001, EMPIR ECON, V26, P307, DOI [10.1007/s001810000059, DOI 10.1007/S001810000059]
  • [5] Cao, 1993, TEST, V2, P161, DOI 10.1007/BF02562674
  • [6] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [7] NONPARAMETRIC ESTIMATES OF REGRESSION QUANTILES AND THEIR LOCAL BAHADUR REPRESENTATION
    CHAUDHURI, P
    [J]. ANNALS OF STATISTICS, 1991, 19 (02) : 760 - 777
  • [8] A lack-of-fit test for quantile regression models with high-dimensional covariates
    Conde-Amboage, Mercedes
    Sanchez-Sellero, Cesar
    Gonzalez-Manteiga, Wenceslao
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 88 : 128 - 138
  • [9] Semiparametric copula quantile regression for complete or censored data
    De Backer, Mickael
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1660 - 1698
  • [10] A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS
    DEJONG, P
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) : 261 - 277