Machine learning-based modeling in food processing applications: State of the art
被引:65
作者:
Khan, Md. Imran H.
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Dhaka Univ Engn & Technol DUET, Dept Mech Engn, Gazipur 1700, BangladeshQueensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Khan, Md. Imran H.
[1
,2
]
Sablani, Shyam S.
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USAQueensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Sablani, Shyam S.
[3
]
Nayak, Richi
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Sch Comp Sci, 2 George St, Brisbane, Qld 4000, AustraliaQueensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Nayak, Richi
[4
]
Gu, Yuantong
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, AustraliaQueensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Gu, Yuantong
[1
]
机构:
[1] Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, 2 George St, Brisbane, Qld 4000, Australia
Food processing is a complex, multifaceted problem that requires substantial human interaction to optimize the various process parameters to minimize energy consumption and ensure better-quality products. The development of a machine learning (ML)-based approach to food processing applications is an exciting and innovative idea for optimizing process parameters and process kinetics to reduce energy consumption, processing time, and ensure better-quality products; however, developing such a novel approach requires significant scientific effort. This paper presents and evaluates ML-based approaches to various food processing operations such as drying, frying, baking, canning, extrusion, encapsulation, and fermentation to predict process kinetics. A step-by-step procedure to develop an ML-based model and its practical implementation is presented. The key challenges of neural network training and testing algorithms and their limitations are discussed to assist readers in selecting algorithms for solving problems specific to food processing. In addition, this paper presents the potential and challenges of applying ML-based techniques to hybrid food processing operations. The potential of physics-informed ML modeling techniques for food processing applications and their strategies is also discussed. It is expected that the potential information of this paper will be valuable in advancing the ML-based technology for food processing applications.
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
Batista, Lucia M.
;
da Rosa, Cezar A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
da Rosa, Cezar A.
;
Pinto, Luiz A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
机构:Univ Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, Portugal
Costa, RM
;
Oliveira, FAR
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, PortugalUniv Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, Portugal
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
Batista, Lucia M.
;
da Rosa, Cezar A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
da Rosa, Cezar A.
;
Pinto, Luiz A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, BrazilUniv Fed Rio Grande do Sul, Dept Chem, Fundacao, BR-96201900 Rio Grande, RS, Brazil
机构:Univ Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, Portugal
Costa, RM
;
Oliveira, FAR
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, PortugalUniv Catolica Portuguesa, Escola Super Biotechnol, Rua Dr Antonio Bernardino de Almeida, P-4200 Porto, Portugal