Lie Symmetry Analysis and Conservation Laws of a Two-Wave Mode Equation for the Integrable Kadomtsev-Petviashvili Equation

被引:8
作者
Moretlo, T. S. [1 ]
Muatjetjeja, B. [1 ,2 ]
Adem, A. R. [3 ]
机构
[1] North West Univ, Dept Math Sci, Private Bag X 2046, ZA-2735 Mmabatho, South Africa
[2] Univ Botswana, Fac Sci, Dept Math, Private Bag 22, Gaborone, Botswana
[3] Univ South Africa, Dept Math Sci, UNISA, ZA-0003 Pretoria, South Africa
关键词
Two-wave mode equation for the integrable Kadomtsev-Petviashvili (TKP) equation; Lie point symmetries; Conservation laws; MULTIPLE WAVE SOLUTIONS; BACKLUND TRANSFORMATION; SOLITON-SOLUTIONS; LUMP SOLUTIONS; ROGUE WAVES; DYNAMICS; KDV;
D O I
10.5890/JAND.2021.03.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lie symmetry analysis is performed on a two-wave mode equation for the integrable Kadomtsev-Petviashvili (TKP) equation which describes the propagation of two different wave modes in the same direction simultaneously. The similarity reductions and an exact solution are computed. In addition to this, we derive the conservation laws for the underlying equation. (C)2021 L&H Scientific Publishing, LLC. All rights reserved.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 28 条
[1]  
Du X.X., 2018, EUROPEAN PHYS J PLUS, V133, P378
[2]   Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber [J].
Du, Zhong ;
Tian, Bo ;
Chai, Han-Peng ;
Sun, Yan ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2018, 109 :90-98
[3]   Backlund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation [J].
Gao, Li-Na ;
Zi, Yao-Yao ;
Yin, Yu-Hang ;
Ma, Wen-Xiu ;
Lu, Xing .
NONLINEAR DYNAMICS, 2017, 89 (03) :2233-2240
[4]   Resonant behavior of multiple wave solutions to a Hirota bilinear equation [J].
Gao, Li-Na ;
Zhao, Xue-Ying ;
Zi, Yao-Yao ;
Yu, Jun ;
Lu, Xing .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) :1225-1229
[5]   Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas [J].
Gao, Xin-Yi .
APPLIED MATHEMATICS LETTERS, 2019, 91 :165-172
[6]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[7]   SOLITON-SOLUTIONS FOR A 2ND-ORDER KDV EQUATION [J].
KORSUNSKY, SV .
PHYSICS LETTERS A, 1994, 185 (02) :174-176
[8]  
Korteweg D. J., 1895, PHILOS MAG, V39, P422, DOI [DOI 10.1080/14786449508620739, 10.1080/14786449508620739]
[9]   Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle [J].
Lin, Fu-Hong ;
Chen, Shou-Ting ;
Qu, Qi-Xing ;
Wang, Jian-Ping ;
Zhou, Xian-Wei ;
Lu, Xing .
APPLIED MATHEMATICS LETTERS, 2018, 78 :112-117
[10]   Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations [J].
Liu, Lei ;
Tian, Bo ;
Yuan, Yu-Qiang ;
Du, Zhong .
PHYSICAL REVIEW E, 2018, 97 (05)