Triangle Generative Adversarial Networks

被引:0
|
作者
Gan, Zhe [1 ]
Chen, Liqun [1 ]
Wang, Weiyao [1 ]
Pu, Yunchen [1 ]
Zhang, Yizhe [1 ]
Liu, Hao [1 ]
Li, Chunyuan [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Triangle Generative Adversarial Network (Delta-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by only a few paired samples. Delta-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [2] Exploring generative adversarial networks and adversarial training
    Sajeeda A.
    Hossain B.M.M.
    Int. J. Cogn. Comp. Eng., (78-89): : 78 - 89
  • [3] Interpretable Generative Adversarial Networks
    Li, Chao
    Yao, Kelu
    Wang, Jin
    Diao, Boyu
    Xu, Yongjun
    Zhang, Quanshi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1280 - 1288
  • [4] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [5] Wasserstein Generative Adversarial Networks
    Arjovsky, Martin
    Chintala, Soumith
    Bottou, Leon
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [7] Steganographic Generative Adversarial Networks
    Volkhonskiy, Denis
    Nazarov, Ivan
    Burnaev, Evgeny
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [8] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [9] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [10] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31