A Family of Calabi-Yau Varieties and Potential Automorphy II

被引:224
作者
Barnet-Lamb, Tom [1 ]
Geraghty, David [2 ]
Harris, Michael [3 ]
Taylor, Richard [4 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] CNRS, UMR 7586, Inst Math Jussieu, F-75252 Paris 05, France
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
automorphic representation; Calois representation; Dwork family; Sato-Tate conjecture; L-ADIC LIFTS; GALOIS REPRESENTATIONS; CURVES;
D O I
10.2977/PRIMS/31
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new potential modularity theorems for n-dimensional essentially self-dual l-adic representations of the absolute Galois group of a totally real field. Most notably, in the ordinary case we prove quite a general result. Our results suffice to show that all the symmetric powers of any non-CM, holomorphic, cuspidal; elliptic modular newform of weight greater than one are potentially cuspidal automorphic. This in turns proves the Sato-Tate conjecture for such forms. (In passing we also note that the Sato-Tate conjecture can now be proved for any elliptic curve over a totally real field.)
引用
收藏
页码:29 / 98
页数:70
相关论文
共 36 条
[1]  
[Anonymous], 2001, ANN MATH STUD
[2]  
Arthur J., 1989, ANN MATH STUD, V120
[3]   On the potential automorphy of certain odd-dimensional Galois representations [J].
Barnet-Lamb, Thomas .
COMPOSITIO MATHEMATICA, 2010, 146 (03) :607-620
[4]  
BARNETLAMB T, SATOTATE CONJECTURE
[5]  
BARNETLAMB T, ARXIV0811158
[6]   MONODROMY FOR THE HYPERGEOMETRIC FUNCTION NFN-1 [J].
BEUKERS, F ;
HECKMAN, G .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :325-354
[7]  
Chenevier G., Une application des varietes de Hecke des groupes unitaires
[8]  
CHENEVIER G, CONSTRUCTION AUTOMOR, V2
[9]  
CLOZEL L, STABILISATION FORMUL
[10]   AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS [J].
Clozel, Laurent ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108) :1-181