On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix

被引:16
作者
Yevstafyeva, V. V. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
关键词
Phase space methods;
D O I
10.1134/S000511791506003X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a system of differential equations with relay nonlinearity and an external continuous periodic influence. For system parameters, we obtain sufficient existence and uniqueness conditions for a two-point oscillating solution with given period in case of a Hurwitz system matrix. With exact analytic approaches, we find time moments and switching points in the phase space of the image point for a solution whose period is a multiple of the period of external disturbances. We obtain conditions on system parameters for which a solution in the considered class is asymptotically-orbital stable.
引用
收藏
页码:977 / 988
页数:12
相关论文
共 8 条
[1]  
Krasnoselskii M. A., 1976, Sov. Math. Dokl, V17, P128
[2]  
POKROVSKII AV, 1986, AUTOMAT REM CONTR+, V47, P451
[3]  
Potapov DK, 2011, T I MAT MEKH URO RAN, V17, P190
[4]   Optimal control of higher order elliptic distributed systems with a spectral parameter and discontinuous nonlinearity [J].
Potapov, D. K. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2013, 52 (02) :180-185
[5]  
[Потапов Дмитрий Константинович Potapov Dmitry K.], 2012, [Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии, Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analiz i informatsionnye tekhnologii], P12
[6]  
Yevstafyeva VV, 2011, UFA MATH J, V3, P19
[7]  
Yevstafyeva V.V., 2004, VESTN ST PETERSB U S, V10, P101
[8]  
Yevstafyeva VV, 2013, J SIB FED UNIV-MATH, V6, P136