Traveling waves in a bio-reactor model with stage-structure

被引:25
作者
Wang, Zhi-Cheng [1 ,2 ]
Wu, Jianhua [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Bio-reactor model; Traveling wave solutions; Stage-structure; Fixed point theorem; EPIDEMIC MODEL; CHEMOSTAT; SPREAD;
D O I
10.1016/j.jmaa.2011.06.084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the existence and non-existence of traveling wave solutions are established for a bio-reactor model with stage-structure. The method to prove the existence of wave solutions is to construct an invariant cone of initial functions defined in a large but bounded domain, to apply a fixed point theorem on this cone and then extend to the unbounded spatial domain R by a limiting argument. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:683 / 692
页数:10
相关论文
共 22 条
[1]  
Ballyk M, 1998, SIAM J APPL MATH, V59, P573
[2]   Instability in diffusive ecological models with nonlocal delay effects [J].
Boushaba, K ;
Ruan, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :269-286
[3]   Travelling wave solutions for an infection-age structured model with diffusion [J].
Ducrot, A. ;
Magal, P. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :459-482
[4]   Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models [J].
Ducrot, Arnaut ;
Magal, Pierre ;
Ruan, Shigui .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :311-331
[5]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[6]   Global stability in chemostat-type plankton models with delayed nutrient recycling [J].
He, XZ ;
Ruan, SG .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (03) :253-271
[7]   DIFFERENTIAL-EQUATION MODELS OF SOME PARASITIC INFECTIONS - METHODS FOR THE STUDY OF ASYMPTOTIC-BEHAVIOR [J].
HIRSCH, WM ;
HANISCH, H ;
GABRIEL, JP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (06) :733-753
[8]   TRAVELING WAVES FOR A SIMPLE DIFFUSIVE EPIDEMIC MODEL [J].
HOSONO, Y ;
ILYAS, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (07) :935-966
[9]  
Huang W., 2004, J. of Dynamics and DifF. Eq, V16, P745, DOI DOI 10.1007/s10884-004-6115-x
[10]   A SIMPLE-MODEL FOR THE SPATIAL SPREAD AND CONTROL OF RABIES [J].
KALLEN, A ;
ARCURI, P ;
MURRAY, JD .
JOURNAL OF THEORETICAL BIOLOGY, 1985, 116 (03) :377-393