We study two kinds of transformation groups of a compact locally conformally Kahler (l.c.K.) manifold. First, we study compact l.c.K. manifolds by means of the existence of holomorphic l.c.K. flow (i.e., a conformal, holomorphic flow with respect to the Hermitian metric.) We characterize the structure of the compact l.c.K. manifolds with parallel Lee form. Next, we introduce the Lee-Cauchy-Riemann (LCR) transformations as a class of diffeomorphisms preserving the specific G-structure of l.c.K. manifolds. We show that compact l.c.K. manifolds with parallel Lee form admitting a non-compact holomorphic flow of LCR transformations are rigid: such a manifold is holomorphically isometric to a Hopf manifold with parallel Lee form.
机构:
Univ Bucharest, Fac Math, 14 Acad Str, Bucharest 70109, Romania
Romanian Acad, Inst Math Sim Stoilow, Bucharest 010702, RomaniaUniv Bucharest, Fac Math, 14 Acad Str, Bucharest 70109, Romania
Ornea, L.
Verbitsky, M.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Theoret & Expt Phys, Moscow 117259, RussiaUniv Bucharest, Fac Math, 14 Acad Str, Bucharest 70109, Romania
机构:
Univ Bucharest, Fac Math, Bucharest 70109, Romania
Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, RomaniaUniv Bucharest, Fac Math, Bucharest 70109, Romania
Ornea, Liviu
Verbitsky, Misha
论文数: 0引用数: 0
h-index: 0
机构:
Inst Theoret & Expt Phys, Moscow 117259, RussiaUniv Bucharest, Fac Math, Bucharest 70109, Romania
机构:
Univ Bucharest, Fac Math, Bucharest 70109, Romania
Romanian Acad, Inst Math Simion Stoilow, Bucharest 010702, RomaniaUniv Bucharest, Fac Math, Bucharest 70109, Romania
Ornea, Liviu
Verbitsky, Misha
论文数: 0引用数: 0
h-index: 0
机构:
NRU HSE, Lab Algebra Geometry, Fac Math, Moscow, RussiaUniv Bucharest, Fac Math, Bucharest 70109, Romania