NanoCrystal: A Web-Based Crystallographic Tool for the Construction of Nanoparticles Based on Their Crystal Habit

被引:39
作者
Chatzigoulas, Alexios [1 ,2 ]
Karathanou, Konstantina [1 ,2 ,4 ]
Dellis, Dimitris [3 ]
Cournia, Zoe [1 ]
机构
[1] Acad Athens, Biomed Res Fdn, 4 Soranou Ephessiou, Athens 11527, Greece
[2] Univ Athens, Dept Informat & Telecommun, Informat Technol Med & Biol, Athens 15784, Greece
[3] Greek Res & Technol Network SA, 7 Kifissias Ave, Athens 11523, Greece
[4] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
OPEN-ACCESS COLLECTION; OPEN DATABASE; MORPHOLOGY; DELIVERY; GROWTH; VISUALIZATION; SIMULATIONS; MAGNETITE; DYNAMICS; BEHAVIOR;
D O I
10.1021/acs.jcim.8b00269
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Modeling of nanoparticles is an essential first step to assess their capacities for different uses such as energy storage and drug delivery. However, creating an initial starting conformation for modeling and simulation is tedious because every crystalline material grows with a different crystal habit. In this application note, we describe NanoCrystal, a novel web-based crystallographic tool that creates nanoparticle models from any crystal structure guided by their preferred equilibrium shape under standard conditions according to the Wulff morphology (crystal habit). Users can upload a cif file, define the Miller indices and their corresponding minimum surface energies according to the Wulff construction of a particular crystal, and specify the size of the nanocrystal. As a result, the nanoparticle is constructed and visualized, and the coordinates of the atoms are output to the user. NanoCrystal can be accessed at http://nanocrystal.vi-seem.edu/.
引用
收藏
页码:2380 / 2386
页数:7
相关论文
共 69 条
[1]   Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes [J].
Angelikopoulos, Panagiotis ;
Sarkisov, Lev ;
Cournia, Zoe ;
Gkeka, Paraskevi .
NANOSCALE, 2017, 9 (03) :1040-1048
[2]  
[Anonymous], 2015, MATLAB STAT TOOLB
[3]   Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters [J].
Baletto, F ;
Mottet, C ;
Ferrando, R .
SURFACE SCIENCE, 2000, 446 (1-2) :31-45
[4]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[5]   Nanoparticle shapes by using Wulff constructions and first-principles calculations [J].
Barmparis, Georgios D. ;
Lodziana, Zbigniew ;
Lopez, Nuria ;
Remediakis, Ioannis N. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :361-368
[6]   Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer [J].
Beek, WJE ;
Wienk, MM ;
Janssen, RAJ .
ADVANCED MATERIALS, 2004, 16 (12) :1009-+
[7]   Crystal growth and morphology: New developments in an integrated Hartman-Perdok-connected net-roughening transition theory, supported by computer simulations [J].
Bennema, P ;
Meekes, H ;
Boerrigter, SXM ;
Cuppen, HM ;
Deij, MA ;
van Eupent, J ;
Verwer, P ;
Vlieg, E .
CRYSTAL GROWTH & DESIGN, 2004, 4 (05) :905-913
[8]   Coarse-Grained Models for Protein-Cell Membrane Interactions [J].
Bradley, Ryan ;
Radhakrishnan, Ravi .
POLYMERS, 2013, 5 (03) :890-936
[9]   New software for searching the Cambridge Structural Database and visualizing crystal structures [J].
Bruno, IJ ;
Cole, JC ;
Edgington, PR ;
Kessler, M ;
Macrae, CF ;
McCabe, P ;
Pearson, J ;
Taylor, R .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2002, 58 :389-397
[10]   Covalent radii revisited [J].
Cordero, Beatriz ;
Gomez, Veronica ;
Platero-Prats, Ana E. ;
Reves, Marc ;
Echeverria, Jorge ;
Cremades, Eduard ;
Barragan, Flavia ;
Alvarez, Santiago .
DALTON TRANSACTIONS, 2008, (21) :2832-2838