Asymptotic distribution of the maximum interpoint distance for high-dimensional data

被引:2
作者
Tang, Ping [1 ]
Lu, Rongrong [1 ]
Xie, Junshan [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475000, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpoint distance; Gumbel distribution; Stein-Chen Poisson approximation; Moderate deviation; LIKELIHOOD RATIO TESTS; LARGEST ENTRIES; LIMIT DISTRIBUTION; SAMPLE; LAWS; DIAMETER; THEOREMS; MATRICES;
D O I
10.1016/j.spl.2022.109567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1 , X-2 , ... , X-n be a random sample coming from a p-dimensional population with independent sub-exponential components. Denote the maximum interpoint Euclidean distance by M-n = max(1 <= i <= jn) ?Xi-Xj?. When the dimension p=p(n)-> infinity with the sample size n -> infinity, it proves that M-n(2) under a suitable normalization asymptotically obeys a Gumbel type distribution. The proofs mainly depend on the Stein-Chen Poisson approximation method and the moderate deviation of the sum of independent random variables. (C) 2022 Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 1970, Order Statistics
[2]   Limiting distributions for the maximum of a symmetric function on a random point set [J].
Appel, M. J. ;
Russo, R. P. .
JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) :365-375
[3]   Limit laws for the diameter of a random point set [J].
Appel, MJB ;
Najim, CA ;
Russo, RP .
ADVANCES IN APPLIED PROBABILITY, 2002, 34 (01) :1-10
[4]   2 MOMENTS SUFFICE FOR POISSON APPROXIMATIONS - THE CHEN-STEIN METHOD [J].
ARRATIA, R ;
GOLDSTEIN, L ;
GORDON, L .
ANNALS OF PROBABILITY, 1989, 17 (01) :9-25
[5]  
Barnett V, 1984, Wiley series in probability and mathematical statistics. Applied probability and statistics
[6]   LIMITING LAWS OF COHERENCE OF RANDOM MATRICES WITH APPLICATIONS TO TESTING COVARIANCE STRUCTURE AND CONSTRUCTION OF COMPRESSED SENSING MATRICES [J].
Cai, T. Tony ;
Jiang, Tiefeng .
ANNALS OF STATISTICS, 2011, 39 (03) :1496-1525
[7]  
Cai T, 2013, J MACH LEARN RES, V14, P1837
[8]   FROM STEIN IDENTITIES TO MODERATE DEVIATIONS [J].
Chen, Louis H. Y. ;
Fang, Xiao ;
Shao, Qi-Man .
ANNALS OF PROBABILITY, 2013, 41 (01) :262-293
[9]   Tests for High-Dimensional Covariance Matrices [J].
Chen, Song Xi ;
Zhang, Li-Xin ;
Zhong, Ping-Shou .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) :810-819
[10]   The diameter of an elliptical cloud [J].
Demichel, Yann ;
Fermin, Ana-Karina ;
Soulier, Philippe .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-32