Characterization of supported Ni catalysts for aqueous-phase reforming of glycerol

被引:31
|
作者
Lee, Hong-Joo [1 ]
Shin, Gwan Su [2 ]
Kim, Young-Chul [3 ,4 ]
机构
[1] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Gwangju 500757, South Korea
[2] Chonnam Natl Univ, Dept Adv Chem Engn, Gwangju 500757, South Korea
[3] Chonnam Natl Univ, Fac Appl Chem Engn, Gwangju 500757, South Korea
[4] Chonnam Natl Univ, Res Inst Catalysis, Gwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
Aqueous Phase Reforming; Nickel-based Catalysts; Glycerol; Hydrogen; Reforming; HYDROGEN-PRODUCTION; RENEWABLE HYDROGEN; ETHYLENE-GLYCOL; STEAM; PROPANE; OXIDATION; NI/AL2O3; ETHANOL; RU;
D O I
10.1007/s11814-014-0325-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aqueous phase reforming (APR) over supported nickel-based catalysts was investigated as a feasibility study for hydrogen production from glycerol, byproduct of biodiesel produced by trans-esterification of triglycerides. Four different Ni-supported catalysts (Ni/LaAlO3, Ni/CeO2, Ni/MgO, and Ni/MgAl) were examined for the glycerol reforming in terms of the catalytic activities and the level of resistance. The APR of glycerol over Ni-supported catalysts showed that the conversion of glycerol to gas and H-2 selectivity were strongly dependent on the support and amount of Ni loading. A perovskite type catalyst, Ni/LaAlO3, showed the highest reforming performance and good stability. A perovskite-type catalyst showed the glycerol conversion to 36% and the maximum value of H-2 and CO2 selectivity to 96% and 81%. And the reforming gas composition in gas phase was measured to H-2 61%, CO2 32%, CH4 6%, and CO 1% in the APR over Ni/LaAlO3. Comparison results of the reported results showed that Ni supported catalysts in the present study showed good performance for the APR to produce hydrogen from renewable resources.
引用
收藏
页码:1267 / 1272
页数:6
相关论文
共 50 条
  • [1] Characterization of supported Ni catalysts for aqueous-phase reforming of glycerol
    Hong-Joo Lee
    Gwan Su Shin
    Young-Chul Kim
    Korean Journal of Chemical Engineering, 2015, 32 : 1267 - 1272
  • [2] Ni Nanoparticles Supported on CeO2 as Catalysts for Aqueous-Phase Glycerol Reforming
    Ge, Shuchao
    Zhang, Jianghao
    Xiao, Hongfei
    Du, Chuo
    Jin, Yifan
    Yao, Jinshui
    Zhang, Changbin
    ACS APPLIED NANO MATERIALS, 2024, 7 (10) : 11498 - 11505
  • [3] Aqueous-Phase Reforming of Glycerol over Carbon-Nanotube-Supported Catalysts
    M. M. Rahman
    Catalysis Letters, 2020, 150 : 2674 - 2687
  • [5] Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts
    Guo, Yong
    Liu, Xiaohui
    Azmat, Muhammad Usman
    Xu, Wenjie
    Ren, Jiawen
    Wang, Yanqin
    Lu, Guanzhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 227 - 234
  • [6] Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2
    Manfro, Robinson L.
    da Costa, Aline F.
    Ribeiro, Nielson F. P.
    Souza, Mariana M. V. M.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (03) : 330 - 335
  • [7] Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies
    Shabaker, JW
    Simonetti, DA
    Cortright, RD
    Dumesic, JA
    JOURNAL OF CATALYSIS, 2005, 231 (01) : 67 - 76
  • [8] SUPPORTED AQUEOUS-PHASE CATALYSTS
    ARHANCET, JP
    DAVIS, ME
    MEROLA, JS
    HANSON, BE
    JOURNAL OF CATALYSIS, 1990, 121 (02) : 327 - 339
  • [9] Aqueous-phase reforming of ethylene glycol over supported platinum catalysts
    Shabaker, JW
    Huber, GW
    Davda, RR
    Cortright, RD
    Dumesic, JA
    CATALYSIS LETTERS, 2003, 88 (1-2) : 1 - 8
  • [10] Aqueous-phase reforming of ethylene glycol to hydrogen on supported Pt catalysts
    Ma, Jinqiang
    Xu, Ye
    Xu, Yuanfeng
    Li, Hui
    Li, Hexing
    Li, Ping
    Zhou, Xinggui
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 2511 - +