Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning

被引:43
作者
Fischman, Sebastien [1 ]
Perez-Anker, Javiera [2 ,3 ]
Tognetti, Linda [4 ]
Di Naro, Angelo [4 ]
Suppa, Mariano [5 ,6 ,7 ]
Cinotti, Elisa [4 ,6 ]
Viel, Theo [1 ]
Monnier, Jilliana [6 ,8 ]
Rubegni, Pietro [4 ]
del Marmol, Veronique [5 ]
Malvehy, Josep [2 ,3 ]
Puig, Susana [2 ,3 ]
Dubois, Arnaud [9 ]
Perrot, Jean-Luc [10 ]
机构
[1] DAMAE Med, Paris, France
[2] Univ Barcelona, Hosp Clin Barcelona, Melanoma Unit, Barcelona, Spain
[3] Inst Salud Carlos III, CIBER Enfermedades Raras, Barcelona, Spain
[4] Univ Siena, Dept Med Surg & Neurol Sci, Dermatol Unit, Siena, Italy
[5] Univ Libre Bruxelles, Dept Dermatol, Hop Erasme, Brussels, Belgium
[6] Soc Francaise Dermatol SFD, Grp Imagerie Cutanee Non Invas GICNI, Paris, France
[7] Univ Libre Bruxelles, Inst Jules Bordet, Brussels, Belgium
[8] Aix Marseille Univ, Timone Hosp, AP HP, Dept Dermatol & Skin Canc, Marseille, France
[9] Univ Paris Saclay, Inst Opt, Lab Charles Fabry, Grad Sch, Palaiseau, France
[10] Univ Hosp St Etienne, Dept Dermatol, St Etienne, France
关键词
OPTICAL COHERENCE TOMOGRAPHY; HUMAN SKIN; HISTOPATHOLOGY; MODEL;
D O I
10.1038/s41598-021-04395-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diagnosis based on histopathology for skin cancer detection is today's gold standard and relies on the presence or absence of biomarkers and cellular atypia. However it suffers drawbacks: it requires a strong expertise and is time-consuming. Moreover the notion of atypia or dysplasia of the visible cells used for diagnosis is very subjective, with poor inter-rater agreement reported in the literature. Lastly, histology requires a biopsy which is an invasive procedure and only captures a small sample of the lesion, which is insufficient in the context of large fields of cancerization. Here we demonstrate that the notion of cellular atypia can be objectively defined and quantified with a non-invasive in-vivo approach in three dimensions (3D). A Deep Learning (DL) algorithm is trained to segment keratinocyte (KC) nuclei from Line-field Confocal Optical Coherence Tomography (LC-OCT) 3D images. Based on these segmentations, a series of quantitative, reproducible and biologically relevant metrics is derived to describe KC nuclei individually. We show that, using those metrics, simple and more complex definitions of atypia can be derived to discriminate between healthy and pathological skins, achieving Area Under the ROC Curve (AUC) scores superior than 0.965, largely outperforming medical experts on the same task with an AUC of 0.766. All together, our approach and findings open the door to a precise quantitative monitoring of skin lesions and treatments, offering a promising non-invasive tool for clinical studies to demonstrate the effects of a treatment and for clinicians to assess the severity of a lesion and follow the evolution of pre-cancerous lesions over time.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms [J].
Adabi, Saba ;
Hosseinzadeh, Matin ;
Noei, Shahryar ;
Conforto, Silvia ;
Daveluy, Steven ;
Clayton, Anne ;
Mehregan, Darius ;
Nasiriavanaki, Mohammadreza .
SCIENTIFIC REPORTS, 2017, 7
[2]   AN OPTIMAL ALGORITHM FOR CONSTRUCTING THE WEIGHTED VORONOI DIAGRAM IN THE PLANE [J].
AURENHAMMER, F ;
EDELSBRUNNER, H .
PATTERN RECOGNITION, 1984, 17 (02) :251-257
[3]  
Bengio Y, 2004, J MACH LEARN RES, V5, P1089
[4]   Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function [J].
Boer, Magdalena ;
Duchnik, Ewa ;
Maleszka, Romuald ;
Marchlewicz, Mariola .
POSTEPY DERMATOLOGII I ALERGOLOGII, 2016, 33 (01) :1-5
[5]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]  
Carletti M, 2019, IEEE SYS MAN CYBERN, P21, DOI [10.1109/smc.2019.8913901, 10.1109/SMC.2019.8913901]
[8]   Segmentation of nucleus and cytoplasm of a single cell in three-dimensional tomogram using optical coherence tomography [J].
Chang, Chia-Kai ;
Tsai, Chien-Chung ;
Hsu, Wan-Yi ;
Chen, Jau-Shiuh ;
Liao, Yi-Hua ;
Sheen, Yi-Shuan ;
Hong, Jin-Bon ;
Lin, Ming-Yi ;
Tjiu, Jeng-Wei ;
Huang, Sheng-Lung .
JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (03)
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Histopathology of incipient intraepidermal squamous cell carcinoma ("actinic keratosis") [J].
Cockerell, CJ .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2000, 42 (01) :S11-S17