Early fault-tolerant simulations of the Hubbard model

被引:41
作者
Campbell, Earl T. [1 ]
机构
[1] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
关键词
simulations; fault tolerant; Hubbard model; quantum algorithm; QUANTUM; ALGORITHMS;
D O I
10.1088/2058-9565/ac3110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Simulation of the Hubbard model is a leading candidate for the first useful applications of a fault-tolerant quantum computer. A recent study of quantum algorithms for early simulations of the Hubbard model [Kivlichan et al 2019 Quantum 4 296] found that the lowest resource costs were achieved by split-operator Trotterization combined with the fast-fermionic Fourier transform (FFFT) on an L x L lattice with length L = 2(k). On lattices with length L not equal 2(k), Givens rotations can be used instead of the FFFT but lead to considerably higher resource costs. We present a new analytic approach to bounding the simulation error due to Trotterization that provides much tighter bounds for the split-operator FFFT method, leading to 16x improvement in error bounds. Furthermore, we introduce plaquette Trotterization that works on any size lattice and apply our improved error bound analysis to show competitive resource costs. We consider a phase estimation task and show plaquette Trotterization reduces the number of non-Clifford gates by a factor 5.5 x to 9x (depending on the parameter regime) over the best previous estimates for 8 x 8 and 16 x 16 lattices and a much larger factor for other lattice sizes not of the form L = 2(k). In conclusion, we find there is a potentially useful application for fault-tolerant quantum computers using around one million Toffoli gates.
引用
收藏
页数:20
相关论文
共 48 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[4]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[5]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[7]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[8]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[9]   Lower bounds on the non-Clifford resources for quantum computations [J].
Beverland, Michael ;
Campbell, Earl ;
Howard, Mark ;
Kliuchnikov, Vadym .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
[10]   Efficient synthesis of probabilistic quantum circuits with fallback [J].
Bocharov, Alex ;
Roetteler, Martin ;
Svore, Krysta M. .
PHYSICAL REVIEW A, 2015, 91 (05)