Optimal and Robust Designs for Estimating the Concentration Curve and the AUC

被引:2
|
作者
Belouni, Mohamad [1 ]
Benhenni, Karim [2 ]
机构
[1] Univ Grenoble 1, CNRS 5224, Lab Jean Kuntzmann, F-38041 Grenoble, France
[2] Univ Pierre Mendes France, CNRS 5224, Lab Jean Kuntzmann, F-38040 Grenoble 09, France
关键词
AUC; autocorrelated errors; concentration curve; minimax; normality; optimal designs; optimal linear estimator; regression model; simulated annealing algorithm; CORRELATED ERRORS; STOCHASTIC-PROCESSES; ESTIMATING INTEGRALS; REGRESSION PROBLEMS; MODELS; TIME; AREA;
D O I
10.1111/sjos.12116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.
引用
收藏
页码:453 / 470
页数:18
相关论文
共 50 条
  • [1] Experimental designs for the estimation of the concentration curve and the AUC
    Belouni, Mohamad
    Benhenni, Karim
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (13-14) : 707 - 710
  • [2] Estimating the AUC of the MROC curve in the presence of measurement errors
    Siva, G.
    Vardhan, R. Vishnu
    Kamath, Asha
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (05) : 533 - 546
  • [3] Optimal Designs for Non-Compartmental Analysis of Pharmacokinetic Studies
    Barnett, Helen Yvette
    Geys, Helena
    Jacobs, Tom
    Jaki, Thomas
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2018, 10 (04): : 255 - 263
  • [4] Optimal designs for estimating the slope of a regression
    Dette, Holger
    Melas, Viatcheslav B.
    Pepelyshev, Andrey
    STATISTICS, 2010, 44 (06) : 617 - 628
  • [5] An Extension of the Receiver Operating Characteristic Curve and AUC-Optimal Classification
    Takenouchi, Takashi
    Komori, Osamu
    Eguchi, Shinto
    NEURAL COMPUTATION, 2012, 24 (10) : 2789 - 2824
  • [6] ROBUST T-OPTIMAL DISCRIMINATING DESIGNS
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    ANNALS OF STATISTICS, 2013, 41 (04) : 1693 - 1715
  • [7] Searching for an optimal AUC estimation method: a never-ending task?
    Jawien, Wojciech
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2014, 41 (06) : 655 - 673
  • [8] Optimal designs for estimating the percentiles of the risk in multistage models of carcinogenesis
    Kitsos, C
    BIOMETRICAL JOURNAL, 1999, 41 (01) : 33 - 43
  • [9] Optimal designs for estimating individual coefficients in polynomial regression with no intercept
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [10] Partial AUC and optimal thresholds
    Hong, Chong Sun
    Cho, Hyun Su
    KOREAN JOURNAL OF APPLIED STATISTICS, 2019, 32 (02) : 187 - 198