Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes

被引:21
作者
Long, Jerome [1 ]
Asakura, Daisuke [2 ]
Okubo, Masashi [3 ]
Yamada, Atsuo [3 ]
Guari, Yannick [1 ]
Larionova, Joulia [1 ]
机构
[1] Univ Montpellier, UMR UM CNRS ENSM 5253, Inst Charles Gerhardt Montpellier, Ingn Mol & Nanoobjets, Pl E Bataillon, F-34095 Montpellier, France
[2] Natl Inst Adv Ind Sci & Technol, Umezono 1-1-1, Tsukuba, Ibaraki, Japan
[3] Univ Tokyo, Sch Engn, Dept Chem Syst Engn, Bunkyo Ku, Hongo 7-8-1, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
PRUSSIAN BLUE ANALOGS; METAL-ORGANIC FRAMEWORKS; PHOTOINDUCED MAGNETIZATION; MULTIFUNCTIONAL MATERIALS; CATHODE MATERIALS; RED LUMINESCENCE; PHASE-TRANSITION; OPTICAL-ACTIVITY; BATTERIES; HEXACYANOFERRATE;
D O I
10.1021/acs.inorgchem.6b01086
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Discovery of novel compounds capable of electrochemical ion intercalation is a primary step toward development of advanced electrochemical devices such as batteries. Although cyano-bridged coordination polymers including Prussian blue analogues have been intensively investigated as ion intercalation materials, the solid-state electrochemistry of the octacyanotungstate-bridged coordination polymer has not been investigated. Here, we demonstrate that an octacyanotungstate-bridged coordination polymer Tb(H2O)(5)[W(CN)(8)] operates as a Li+-ion intercalation electrode material. The detailed magnetic measurements reveal that the tunable amount of intercalated Li+ ion in the solid-state redox reaction between paramagnetic [W-V(CN)(8)](3-) and diamagnetic [W-IV(CN)(8)](4-) in the framework enables the electrochemical control of different magnetic regimes. While the initial ferromagnetic long-range ordering is irreversibly lost upon lithium insertion, electrochemical switching between paramagnetic and short-range ordering regimes can be achieved.
引用
收藏
页码:7637 / 7646
页数:10
相关论文
共 64 条
[21]   A ROOM-TEMPERATURE ORGANOMETALLIC MAGNET BASED ON PRUSSIAN BLUE [J].
FERLAY, S ;
MALLAH, T ;
OUAHES, R ;
VEILLET, P ;
VERDAGUER, M .
NATURE, 1995, 378 (6558) :701-703
[22]   Ultrahigh Porosity in Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Ko, Nakeun ;
Go, Yong Bok ;
Aratani, Naoki ;
Choi, Sang Beom ;
Choi, Eunwoo ;
Yazaydin, A. Oezguer ;
Snurr, Randall Q. ;
O'Keeffe, Michael ;
Kim, Jaheon ;
Yaghi, Omar M. .
SCIENCE, 2010, 329 (5990) :424-428
[23]  
Ikezoe Y, 2012, NAT MATER, V11, P1081, DOI [10.1038/NMAT3461, 10.1038/nmat3461]
[24]   Lithium intercalation behavior of iron cyanometallates [J].
Imanishi, N ;
Morikawa, T ;
Kondo, J ;
Yamane, R ;
Takeda, Y ;
Yamamoto, O ;
Sakaebe, H ;
Tabuchi, M .
JOURNAL OF POWER SOURCES, 1999, 81 :530-534
[25]   SPECTROELECTROCHEMISTRY AND ELECTROCHEMICAL PREPARATION METHOD OF PRUSSIAN BLUE MODIFIED ELECTRODES [J].
ITAYA, K ;
ATAKA, T ;
TOSHIMA, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (18) :4767-4772
[26]   Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive 137Cs [J].
Jang, Sung-Chan ;
Haldorai, Yuvaraj ;
Lee, Go-Woon ;
Hwang, Seung-Kyu ;
Han, Young-Kyu ;
Roh, Changhyun ;
Huh, Yun Suk .
SCIENTIFIC REPORTS, 2015, 5
[27]   Phase Separation of a Hexacyanoferrate-Bridged Coordination Framework under Electrochemical Na-ion Insertion [J].
Kajiyama, Satoshi ;
Mizuno, Yoshifumi ;
Okubo, Masashi ;
Kurono, Ryosuke ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
INORGANIC CHEMISTRY, 2014, 53 (06) :3141-3147
[28]  
Larcher D, 2015, NAT CHEM, V7, P19, DOI [10.1038/NCHEM.2085, 10.1038/nchem.2085]
[29]   Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries [J].
Lee, Hongkyung ;
Kim, Yong-Il ;
Park, Jung-Ki ;
Choi, Jang Wook .
CHEMICAL COMMUNICATIONS, 2012, 48 (67) :8416-8418
[30]   Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries [J].
Lee, Hyun-Wook ;
Wang, Richard Y. ;
Pasta, Mauro ;
Lee, Seok Woo ;
Liu, Nian ;
Cui, Yi .
NATURE COMMUNICATIONS, 2014, 5