Self-directed online machine learning for topology optimization
被引:62
|
作者:
Deng, Changyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Deng, Changyu
[1
]
Wang, Yizhou
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USAUniv Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Wang, Yizhou
[2
]
Qin, Can
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USAUniv Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Qin, Can
[2
]
Fu, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USAUniv Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Fu, Yun
[2
]
Lu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USAUniv Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
Lu, Wei
[1
,3
]
机构:
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
HEAT-TRANSFER ENHANCEMENT;
PHASE-CHANGE-MATERIAL;
NEURAL-NETWORKS;
BAT ALGORITHM;
DESIGN;
D O I:
10.1038/s41467-021-27713-7
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Topology optimization by optimally distributing materials in a given domain requires non-gradient optimizers to solve highly complicated problems. However, with hundreds of design variables or more involved, solving such problems would require millions of Finite Element Method (FEM) calculations whose computational cost is huge and impractical. Here we report Self-directed Online Learning Optimization (SOLO) which integrates Deep Neural Network (DNN) with FEM calculations. A DNN learns and substitutes the objective as a function of design variables. A small number of training data is generated dynamically based on the DNN's prediction of the optimum. The DNN adapts to the new training data and gives better prediction in the region of interest until convergence. The optimum predicted by the DNN is proved to converge to the true global optimum through iterations. Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization. It reduced the computational time by 2 similar to 5 orders of magnitude compared with directly using heuristic methods, and outperformed all state-of-the-art algorithms tested in our experiments. This approach enables solving large multi-dimensional optimization problems.
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Chen, Pengfan
Deng, Changyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Deng, Changyu
Luo, Xinkui
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Inst Phys, Key Lab Vacuum Technol & Phys, Lanzhou 730000, Gansu, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Luo, Xinkui
Ye, Wenlian
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Coll Power & Energy Engn, Key Lab Fluid Machinery & Syst, Lanzhou 730000, Gansu, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Ye, Wenlian
Hu, Lulu
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Technol, Sch Mech Engn, Changzhou 213001, Jiangsu, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Hu, Lulu
Wang, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Inst Phys, Key Lab Vacuum Technol & Phys, Lanzhou 730000, Gansu, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
Wang, Xiaojun
Liu, Yingwen
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China