Predictor-corrector iterative algorithms for solving generalized mixed quasi-variational-like inclusion

被引:5
作者
Ding, XP [1 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
关键词
generalized mixed quasi-variational-like inclusion; partially relaxed n-strongly monotone; predictor-corrector iterative algorithm;
D O I
10.1016/j.cam.2004.11.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the concept of partially relaxed eta-strong monotonicity of set-valued mappings due to author and the auxiliary variational inequality technique, some new predictor-corrector iterative algorithms for solving generalized mixed quasi-variational-like inclusions are suggested and analyzed. The convergence of the algorithms only need the continuity and the partially relaxed eta-strongly monotonicity of set-valued mappings. The algorithm and convergence result are new, and generalize some recent known results in literatures. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 25 条
[1]   Iterative schemes for solving mixed variational-like inequalities [J].
Ansari, QH ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 108 (03) :527-541
[2]  
Antipin A. S., 1997, PARAMETRIC OPTIMIZAT, P11
[3]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI, V264
[4]  
BORDER JP, 1984, DIFFENTIAL INCLUSION
[5]  
Border K.C., 1985, FIXED POINT THEOREMS
[6]  
[Ding Xieping 丁协平], 2003, [四川师范大学学报. 自然科学版, Journal of Sichuan Normal University.Natural science ed.], V26, P1
[7]   Perturbed proximal point algorithms for general quasi-variational-like inclusions [J].
Ding, XP ;
Luo, CL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :153-165
[8]  
Ding XP, 2001, APPL MATH COMPUT, V122, P267, DOI 10.1016/S0096-3003(00)00027-8
[9]   GENERALIZED NONLINEAR VARIATIONAL-INEQUALITIES WITH NONMONOTONE SETVALUED MAPPINGS [J].
DING, XP ;
TARAFDAR, E .
APPLIED MATHEMATICS LETTERS, 1994, 7 (04) :5-11
[10]   EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A GENERAL NONLINEAR VARIATIONAL INEQUALITY [J].
DING, XP ;
TARAFDAR, E .
APPLIED MATHEMATICS LETTERS, 1995, 8 (01) :31-36