Global Sobolev inequalities and degenerate p-Laplacian equations

被引:4
作者
Cruz-Uribe, David [1 ]
Rodney, Scott [2 ]
Rosta, Emily [2 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1Y 3V3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUASI-LINEAR EQUATIONS; POINCARE INEQUALITIES; WEAK SOLUTIONS; REGULARITY;
D O I
10.1016/j.jde.2019.11.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a local, weak Sobolev inequality implies a global Sobolev estimate using existence and regularity results for a family of p -Laplacian equations. Given Q C Rn, let p be a quasi-metric on Q, and let Q be an n x n positive semi-definite matrix function defined on Q. For an open set 0 C Q, we give sufficient conditions to show that if the local weak Sobolev inequality (integral vertical bar f vertical bar pq dx)1/p sigma <= C[r(B)integral(B) vertical bar root A del f|pdx + integral|f|p dx]1/p holds for some a > 1, all balls B C 0, and functions f E Lip0(0), then the global Sobolev inequality also holds. Central to our proof is showing the existence and boundedness of solutions of the Dirichlet problem where Xp,r is a degenerate p -Laplacian operator with a zero order term: Xp,tau u = div(|rQV|(P-2)QVu) u. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:6189 / 6210
页数:22
相关论文
共 21 条
[1]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[2]   A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES [J].
Chua, Seng-Kee ;
Rodney, Scott ;
Wheeden, Richard L. .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (01) :17-57
[3]   Poincare Inequalities and Neumann Problems for the p-Laplacian [J].
Cruz-Uribe, David ;
Rodney, Scott ;
Rosta, Emily .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (04) :738-753
[4]   Two Weight Bump Conditions for Matrix Weights [J].
Cruz-Uribe, David ;
Isralowitz, Joshua ;
Moen, Kabe .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (03)
[5]   Regularity of solutions to degenerate p-Laplacian equations [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Naibo, Virginia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :458-478
[6]   THE STRUCTURE OF THE REVERSE HOLDER CLASSES [J].
CRUZURIBE, D ;
NEUGEBAUER, CJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :2941-2960
[7]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[8]  
Fefferman C., 1981, WADSWORTH MATH SERIE
[9]   WEIGHTED SOBOLEV-POINCARE INEQUALITIES FOR GRUSHIN TYPE OPERATORS [J].
FRANCHI, B ;
GUTIERREZ, CE ;
WHEEDEN, RL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (3-4) :523-604
[10]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF