Magnetic effects on the solvability of 2D incompressible magneto-micropolar boundary layer equations without resistivity in Sobolev spaces

被引:6
作者
Zou, Lin [1 ]
Lin, Xueyun [1 ,2 ,3 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Ctr Appl Math Fujian Prov, Fuzhou 350108, Peoples R China
[3] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Magneto-micropolar boundary layer; Well-posedness; Ill-posedness; Sobolev spaces; General decay; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; WELL-POSEDNESS; ILL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; HALF-SPACE; SHEAR-FLOW; SYSTEM;
D O I
10.1016/j.na.2022.113080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the magnetic effect on the Sobolev solvability of the two-dimensional incompressible magneto-micropolar boundary layer system without resistivity. This gives a complement to the previous work of Lin et al. (2022), where the well-posedness and the convergence theory were established for the magneto-micropolar boundary layer system without monotonicity in Sobolev spaces. If the initial tangential magnetic field is not degenerate, a local-in-time well-posedness theory in Sobolev spaces is established without the monotonic condition on the velocity or the micro-rotational velocity. Moreover, when the tangential magnetic field of shear layer degenerates at the non-degenerate critical point of the initial velocity and the initial micro-rotational velocity, the linearized magneto-micropolar boundary layer system around a shear flow with general decay is ill-posed in Sobolev spaces. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 31 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
[Anonymous], 2016, PREPRINT
[3]  
[Anonymous], 2017, PREPRINT
[4]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[5]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
[6]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[7]   A Note on Prandtl Boundary Layers [J].
Guo, Yan ;
Toan Nguyen .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) :1416-1438
[8]   ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS [J].
Kukavica, Igor ;
Masmoudi, Nader ;
Vicol, Vlad ;
Wong, Tak Kwong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) :3865-3890
[9]  
Kukavica I, 2013, COMMUN MATH SCI, V11, P269
[10]   Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points [J].
Li, Wei-Xi ;
Yang, Tong .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (03) :717-775