Magnetic effects on the solvability of 2D incompressible magneto-micropolar boundary layer equations without resistivity in Sobolev spaces

被引:4
作者
Zou, Lin [1 ]
Lin, Xueyun [1 ,2 ,3 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Ctr Appl Math Fujian Prov, Fuzhou 350108, Peoples R China
[3] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Magneto-micropolar boundary layer; Well-posedness; Ill-posedness; Sobolev spaces; General decay; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; WELL-POSEDNESS; ILL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; HALF-SPACE; SHEAR-FLOW; SYSTEM;
D O I
10.1016/j.na.2022.113080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the magnetic effect on the Sobolev solvability of the two-dimensional incompressible magneto-micropolar boundary layer system without resistivity. This gives a complement to the previous work of Lin et al. (2022), where the well-posedness and the convergence theory were established for the magneto-micropolar boundary layer system without monotonicity in Sobolev spaces. If the initial tangential magnetic field is not degenerate, a local-in-time well-posedness theory in Sobolev spaces is established without the monotonic condition on the velocity or the micro-rotational velocity. Moreover, when the tangential magnetic field of shear layer degenerates at the non-degenerate critical point of the initial velocity and the initial micro-rotational velocity, the linearized magneto-micropolar boundary layer system around a shear flow with general decay is ill-posed in Sobolev spaces. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 31 条
  • [1] Alexandre R, 2015, J AM MATH SOC, V28, P745
  • [2] Remarks on the ill-posedness of the Prandtl equation
    Gerard-Varet, D.
    Nguyen, T.
    [J]. ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 71 - 88
  • [3] Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
  • [4] Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
  • [5] A Note on Prandtl Boundary Layers
    Guo, Yan
    Toan Nguyen
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) : 1416 - 1438
  • [6] ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS
    Kukavica, Igor
    Masmoudi, Nader
    Vicol, Vlad
    Wong, Tak Kwong
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3865 - 3890
  • [7] Kukavica I, 2013, COMMUN MATH SCI, V11, P269
  • [8] Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points
    Li, Wei-Xi
    Yang, Tong
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (03) : 717 - 775
  • [9] GEVREY CLASS SMOOTHING EFFECT FOR THE PRANDTL EQUATION
    Li, Wei-Xi
    Wu, Di
    Xu, Chao-Jiang
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) : 1672 - 1726
  • [10] Global well-posedness for the 2D incompressible magneto-micropolar fluid system with partial viscosity
    Lin, Hongxia
    Xiang, Zhaoyin
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (07) : 1285 - 1306