An Adaptive Observer Design for Real-Time Parameter Estimation in Lithium-Ion Batteries

被引:18
|
作者
Limoge, Damas W. [1 ]
Annaswamy, Anuradha M. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Adaptation models; Observers; Solids; Computational modeling; Electrolytes; Parameter estimation; Real-time systems; Battery management systems; finite element analysis; gradient methods; lithium batteries; observers; parameter estimation; NODAL COORDINATE FORMULATION; ORDER ELECTROCHEMICAL MODEL; BEAM ELEMENTS; CHARGE; STATE; CELL;
D O I
10.1109/TCST.2018.2885962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of parameter identification in an electrochemical model of a Lithium-ion battery. The starting point is the development of an extended model based on the absolute nodal coordinate formulation (ANCF-e), which provides high accuracy, yet low computational complexity. Using such a model, this paper proposes an adaptive observer to carry out real-time parameter estimation. The complex spatiotemporal relation between inputs, states, and outputs, and the combined presence of multiple nonlinearities related to the open circuit, electrolyte, solid, and overpotentials prevents the application of standard tools of parameter estimation and adaptive observers. These challenges are overcome by breaking the ANCF-e model into four subsystems which consist of key dynamic relationships between the molar flux and either measurable quantities or states of the solid and electrolyte dynamics, as well as a nonlinear subsystem that relates inputs, outputs, and states on one hand, and potentials on the other. Adaptive observers are proposed to identify parameters of each subsystem and are validated using simulation studies. Significant extensions of currently available adaptive observers are proposed for this purpose.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 50 条
  • [1] Real-Time Capacity Estimation of Lithium-Ion Batteries Utilizing Thermal Dynamics
    Zhang, Dong
    Dey, Satadru
    Perez, Hector E.
    Moura, Scott J.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (03) : 992 - 1000
  • [2] Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models
    Boovaragavan, Vijayasekaran
    Harinipriya, S.
    Subramanian, Venkat R.
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 361 - 365
  • [3] Adaptive State of Charge Estimation of Lithium-Ion Batteries With Parameter and Thermal Uncertainties
    Chaoui, Hicham
    Gualous, Hamid
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (02) : 752 - 759
  • [4] Adaptive Temperature Estimation for Lithium-Ion Batteries
    Jiang, Yu
    Chen, Ziqiang
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 1066 - 1070
  • [5] Online Capacity Estimation for Lithium-Ion Battery Cells via an Electrochemical Model-Based Adaptive Interconnected Observer
    Allam, Anirudh
    Onori, Simona
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (04) : 1636 - 1651
  • [6] Novel SOH Estimation of Lithium-Ion Batteries for Real-Time Embedded Applications
    Kamali, M. Adib
    Caliwag, Angela C.
    Lim, Wansu
    IEEE EMBEDDED SYSTEMS LETTERS, 2021, 13 (04) : 206 - 209
  • [7] Real-Time Adaptive Parameter Estimation for a Polymer Electrolyte Membrane Fuel Cell
    Xing, Yashan
    Na, Jing
    Costa-Castello, Ramon
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (11) : 6048 - 6057
  • [8] Parameter and order estimation algorithms and convergence analysis for lithium-ion batteries
    Hu, Chong
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (18) : 11411 - 11433
  • [9] State of charge estimation of lithium-ion batteries using an optimal adaptive gain nonlinear observer
    Tian, Yong
    Li, Dong
    Tian, Jindong
    Xia, Bizhong
    ELECTROCHIMICA ACTA, 2017, 225 : 225 - 234
  • [10] Adaptive Neural Observer for Short Circuit Fault Estimation of Lithium-Ion Batteries in Electric Vehicles
    Xu, Yiming
    Ge, Xiaohua
    Shen, Weixiang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (01) : 1551 - 1564