Effect of cellulose nanocrystals on chitosan/PVA/nano β-TCP composite scaffold for bone tissue engineering application

被引:20
|
作者
Ali, Asif [1 ]
Bano, Saleheen [1 ]
Poojary, Satish [2 ]
Chaudhary, Ananya [2 ]
Kumar, Dhruv [2 ]
Negi, Yuvraj Singh [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Polymer & Proc Engn, Saharanpur Campus, Saharanpur, Uttar Pradesh, India
[2] Amity Univ, Amity Sch Mol Med & Stem Cell Res, Noida, Uttar Pradesh, India
关键词
Chitosan; PVA; CNC; beta-TCP; scaffold; tissue engineering; BIOCOMPOSITE SCAFFOLDS; POLYVINYL-ALCOHOL; CHITOSAN; EXTRACTION; NANOFIBERS;
D O I
10.1080/09205063.2021.1973709
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The need for an ideal tissue construct has lead to the search of a myriad of polymer composites with desirable properties. The nature, location and type of tissue to be regenerated determines the type of material to be used. A bone construct has its own requirements such as osteoconductivity, mineralization tendency, synchronized degradation rate, osteogenic differentiation potential etc, which results in search of new possible combination of materials aimed to improve tissue response. The present study involves fabrication of Chitosan/Polyvinyl alcohol (PVA)/beta-Tricalcium Phosphate (beta-TCP)/Cellulose nanocrystals (CNC) porous composite by freeze drying process to be used as bone tissue engineering matrix. CNCs were isolated by acid hydrolysis of cellulose derived from pistachio shells. The prepared scaffold samples were characterized by Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-RAY Diffraction analysis (XRD). The scaffolds exhibited refinement in pore morphology and increased mineralization tendency on increasing CNC concentration. Samples with 1% and 5% CNC concentration have deposited apatite crystals with Ca/P ratio of 1.61 and 1.66 which is very close to the stoichiometric ratio of natural bone apatite. Compressive modulus of CS/PVA/beta-TCP/CNC composite increased on increasing the CNC concentration to 5%. The highest cell viability was recorded in scaffolds with 5% CNC content. Though cell attachment tendency was observed in all samples but the samples with 5 and 10% CNC content demonstrated higher cell densities with significant calcium depositions when cultured for 72 h. Samples with 5% CNC concentration also possessed highest cell differentiation capabilities.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Effect of cellulose nanocrystals on xylan/chitosan/nanoβ-TCP composite matrix for bone tissue engineering
    Asif Ali
    Abshar Hasan
    Yuvraj Singh Negi
    Cellulose, 2022, 29 : 5689 - 5709
  • [2] Effect of cellulose nanocrystals on xylan/chitosan/nanoβ-TCP composite matrix for bone tissue engineering
    Ali, Asif
    Hasan, Abshar
    Negi, Yuvraj Singh
    CELLULOSE, 2022, 29 (10) : 5689 - 5709
  • [3] Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering
    Ali, Asif
    Bano, Saleheen
    Priyadarshi, Ruchir
    Negi, Yuvraj Singh
    MATERIALS TODAY-PROCEEDINGS, 2019, 15 : 173 - 182
  • [4] Nano-Hydroxyapatite/Cellulose composite scaffold for bone tissue engineering
    Petrauskaite, O.
    Liesiene, J.
    Santos, C.
    Gomes, P. S.
    Garcia, M.
    Fernandes, M. H.
    Almeida, M. M.
    Costa, M. E. V.
    Juodzbalys, G.
    Daugela, P.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 34 - 34
  • [5] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    Journal of Biomedical Science, 16
  • [6] Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering
    Jiang Liuyun
    Li Yubao
    Xiong Chengdong
    JOURNAL OF BIOMEDICAL SCIENCE, 2009, 16
  • [7] Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering
    Zhu, Qingmei
    Chen, Xiuqiong
    Liu, Zhaowen
    Li, Zhengyue
    Li, Dongze
    Yan, Huiqiong
    Lin, Qiang
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (04) : 296 - 307
  • [8] Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering
    Shaheen, Th, I
    Montaser, A. S.
    Li, Suming
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 121 : 814 - 821
  • [9] A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering
    Cao, Hong
    Kuboyama, Noboru
    BONE, 2010, 46 (02) : 386 - 395
  • [10] Preparation of PLLA/HAP/β-TCP composite scaffold for bone tissue engineering
    Wang, Xuejun
    Lou, Tao
    Yang, Jing
    Yang, Zhen
    He, Kunpeng
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 143 - 146