Quasi-periodic bifurcations in reversible systems

被引:16
作者
Hanssmann, Heinz [1 ]
机构
[1] Univ Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
关键词
invariant tori; KAM theory; versal unfolding; persistence; LOWER-DIMENSIONAL TORI; KAM-THEOREM; STABILITY;
D O I
10.1134/S1560354710520059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Invariant tori of integrable dynamical systems occur both in the dissipative and in the conservative context, but only in the latter the tori are parameterized by phase space variables. This allows for quasi-periodic bifurcations within a single given system, induced by changes of the normal behavior of the tori. It turns out that in a non-degenerate reversible system all semi-local bifurcations of co-dimension 1 persist, under small non-integrable perturbations, on large Cantor sets.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 1973, ANN MATH STUD
[2]  
[Anonymous], 1977, LECT NOTES MATH
[3]  
BRAAKSMA BLJ, 1990, MEM AM MATH SOC, V83, P83
[4]   Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach [J].
Broer, H ;
Hanssmann, H ;
Jorba, A ;
Villanueva, J ;
Wagener, F .
NONLINEARITY, 2003, 16 (05) :1751-1791
[5]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[6]  
Broer H. W., 1996, Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
[7]   The quasi-periodic reversible Hopf bifurcation [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08) :2605-2623
[8]   Quasi-periodic stability of normally resonant tori [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz ;
Vanderbauwhede, Andre .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :309-318
[9]  
BROER HW, 1990, MEM AM MATH SOC, V83, P1
[10]   A PROOF OF THE ISOENERGETIC KAM-THEOREM FROM THE ORDINARY ONE [J].
BROER, HW ;
HUITEMA, GB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :52-60