Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm

被引:21
作者
Lin, Jian [1 ]
Wang, Zhou-Jing [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter identification; Fractional-order chaotic system; Stochastic fractal search; Hybrid method; DIFFERENTIAL EVOLUTION ALGORITHM; BIOGEOGRAPHY-BASED OPTIMIZATION; SYNCHRONIZATION; DYNAMICS;
D O I
10.1007/s11071-017-3723-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The knowledge about parameters is very important for control and synchronization of fractional-order chaotic systems. In this paper, an effective hybrid stochastic fractal search (HSFS) algorithm is proposed for parameter identification of fractional-order chaotic systems. To enhance the exploration and exploitation abilities, several efficient local search methods are incorporated into the HSFS as hybrid strategies. The performance of the HSFS is comprehensively evaluated on three typical fractional-order chaotic systems. Numerical simulations and comparisons with some existed algorithms demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1243 / 1255
页数:13
相关论文
共 60 条
[1]   Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems [J].
Aghababa, Mohammad Pourmahmood .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (10) :1744-1756
[2]   A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems [J].
Aghababa, Mohammad Pourmahmood .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :679-688
[3]   Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller [J].
Aghababa, Mohammad Pourmahmood .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2670-2681
[4]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[5]   A diversified shuffled frog leaping: An application for parameter identification [J].
Ahandani, Morteza Alinia .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 :1-16
[6]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[7]  
[Anonymous], 2016, PROC IEEE CAN C ELEC
[8]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[9]  
Awad NH, 2016, IEEE C EVOL COMPUTAT, P3154, DOI 10.1109/CEC.2016.7744188
[10]   A decremental stochastic fractal differential evolution for global numerical optimization [J].
Awad, Noor H. ;
Ali, Mostafa Z. ;
Suganthan, Ponnuthurai N. ;
Jaser, Edward .
INFORMATION SCIENCES, 2016, 372 :470-491