Finite time stabilization of chaotic systems via single input

被引:25
作者
Guo, Rongwei [3 ]
Vincent, U. E. [1 ,2 ]
机构
[1] Olabisi Onabanjo Univ, Fac Sci, Dept Phys, Ago Iwoye, Nigeria
[2] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[3] Sch Math & Phys, Shandong Inst Light Ind, Jinan 250353, Peoples R China
关键词
Chaos; Chaos control; Finite time stabilization; NONLINEAR-SYSTEMS; STABILITY; SYNCHRONIZATION;
D O I
10.1016/j.physleta.2010.10.037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we propose a single control input approach for stabilizing three-dimensional chaotic systems in a finite time. The method is more general and is derived from the finite-time stability theory and adaptive control technique; and can stabilize almost all well-known three-dimensional chaotic systems without a prior knowledge of the feedback gain. To show the wider applicability of our method, we give illustrations using different chaotic systems with different structure. Numerical simulations are also used to verify the effectiveness of the technique. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 24 条
[1]  
Bhat SP, 1997, P AMER CONTR CONF, P2513, DOI 10.1109/ACC.1997.609245
[2]   A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICS LETTERS A, 2009, 373 (40) :3637-3642
[3]  
Gao TG, 2006, CHINESE PHYS, V15, P1190, DOI 10.1088/1009-1963/15/6/011
[4]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[5]  
Guo RW, 2009, CHINESE PHYS LETT, V26, DOI 10.1088/0256-307X/26/9/090506
[6]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[7]   Paradox of simple limiter control [J].
Hilker, Frank M. ;
Westerhoff, Frank H. .
PHYSICAL REVIEW E, 2006, 73 (05)
[8]   Finite-time stabilization and stabilizability of a class of controllable systems [J].
Hong, YG .
SYSTEMS & CONTROL LETTERS, 2002, 46 (04) :231-236
[9]   Finite-time control for robot manipulators [J].
Hong, YG ;
Xu, YS ;
Huang, J .
SYSTEMS & CONTROL LETTERS, 2002, 46 (04) :243-253
[10]   Global finite-time stabilization of a class of uncertain nonlinear systems [J].
Huang, XQ ;
Lin, W ;
Yang, B .
AUTOMATICA, 2005, 41 (05) :881-888