High gas-sensing selectivity of bilaterally edge-doped graphene nano-ribbons towards detecting NO2, O2 and SO3 gas molecules: Ab-initio investigation

被引:36
作者
Ali, Muhammad [1 ,2 ]
Khan, Saba [1 ]
Awwad, Falah [3 ]
Tit, Nacir [1 ]
机构
[1] UAE Univ, Coll Sci, Dept Phys, POB 15551, Al Ain, U Arab Emirates
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] UAE Univ, Dept Elect Engn, POB 15551, Al Ain, U Arab Emirates
关键词
Chemisorption/physisorption; Adsorbates on surfaces; DFT; Electronic transport in graphene; Calculations of density of states; Graphene; REVERSIBLE HYDROGEN STORAGE; C2N MONOLAYER; CO2; MOLECULES; ADSORPTION; CONDUCTANCE; NITRIDE;
D O I
10.1016/j.apsusc.2020.145866
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption and gas-sensing properties of B/N edge-doped graphene nano-ribbons (GNRs) are investigated using state-of-the-art computational technique, which is based on a combination of density-functional theory (DFT) and non-equilibrium Green's functions (NEGF) formalism. First, the assessment of the effects dopants' positions, with respect to edges of GNR, on the transport properties has revealed that the bilaterally B/N edge-doping of GNR would yield negative-differential resistance (NDR) IV-characteristics, due to the back-scattering events. Then, the double-edge-doped GNR:B and GNR:N were used to study the gas-sensing properties. The results of adsorption tests show that chemisorption processes can be attained for NO2 and O-2 molecules on GNR:B and SO3 molecule on GNR:N. Furthermore, the results of calculations of transport properties show that the chemisorption processes of these molecules can yield enormous rectifications to the IV-characteristics to sweep the NDR behaviors and should consequently yield large sensors responses in GNR-based devices. Comparison to many other gases is performed and it is concluded that edge-doping in both GNR:B and GNR:N would yield exceptionally high selectivity towards detecting toxic NO2 and SO3 gases, respectively. The combined GNR:B- and GNR:N-based sensors are suggested to be used as gas-sensor and alarm-sensor for NO2 gas, respectively. Our theoretical findings are corroborated with available experimental data.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Characterization of H2S gas sensor based on CuFe2O4 nanoparticles [J].
Abu Haija, Mohammad ;
Abu-Hani, Ayah F. S. ;
Hamdan, Najwa ;
Stephen, Samuel ;
Ayesh, Ahmad I. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 690 :461-468
[2]   ZnO thin films for VOC sensing applications [J].
Al-Hardan, N. H. ;
Abdullah, M. J. ;
Aziz, A. Abdul ;
Ahmad, H. ;
Low, L. Y. .
VACUUM, 2010, 85 (01) :101-106
[3]   Reversible hydrogen storage properties of defect-engineered C4N nanosheets under ambient conditions [J].
Alhameedi, Khidhir ;
Hussain, Tanveer ;
Bae, Hyeonhu ;
Jayatilaka, Dylan ;
Lee, Hoonkyung ;
Karton, Amir .
CARBON, 2019, 152 :344-353
[4]   Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations [J].
Ataca, C. ;
Akturk, E. ;
Ciraci, S. .
PHYSICAL REVIEW B, 2009, 79 (04)
[5]   Selective H2S sensor based on CuO nanoparticles embedded in organic membranes [J].
Ayesh, Ahmad I. ;
Abu-Hani, Ayah F. S. ;
Mahmoud, Saleh T. ;
Haik, Yousef .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 231 :593-600
[6]   Tailoring electronic and transport properties of edge-terminated armchair graphene by defect formation and N/B doping [J].
Baildya, Nabajyoti ;
Ghosh, Narendra Nath ;
Chattopadhyay, Asoke P. .
PHYSICS LETTERS A, 2020, 384 (09)
[7]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[8]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[9]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[10]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473