A piezoelectrically tunable resonator based on carbon and boron nitride coaxial heteronanotubes

被引:4
作者
You, Kangren [1 ]
Li, Chun [1 ]
Zhou, Dongdong [1 ]
Bi, Kedong [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bi, Nanjing 211189, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2022年 / 128卷 / 08期
基金
中国国家自然科学基金;
关键词
Carbon nanotube; Boron nitride; Heterostructure; Piezoelectric effect; Resonator; MOLECULAR-DYNAMICS; QUALITY FACTORS; NANOTUBE; OSCILLATION; MODEL;
D O I
10.1007/s00339-022-05794-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotube (CNT)-based resonators exhibit high sensitivity in the mass detection domain, but the difficulty in tuning the resonant characteristics restricts its application. In this paper, we investigate the resonance characteristics and intrinsic dissipation of a CNT and boron nitride nanotube (BNNT) coaxial heterostructure (CNT@BNNT) via molecular dynamics simulations. Compared with the CNT, the resonance characteristics and intrinsic dissipation of CNT@BNNT change with the axial strain variation induced by the electric field. In addition, the intrinsic dissipation of CNT@BNNT is much lower than that of BNNT due to the interlayer binding and the incommensurate interlayer lattice matching. Besides, the mass resolution of the CNT@BNNT-based resonator exhibits up to 38.9 yg (1 yg = 10(-24) g) at room temperature, comparable to that of the CNT-based resonator. These interesting features indicate that CNT@BNNT is a piezoelectrically tunable resonator with excellent mass sensitivity.
引用
收藏
页数:8
相关论文
共 51 条
[1]   CARBON NANOTUBES AS REMOVABLE TEMPLATES FOR METAL-OXIDE NANOCOMPOSITES AND NANOSTRUCTURES [J].
AJAYAN, PM ;
STEPHAN, O ;
REDLICH, P ;
COLLIEX, C .
NATURE, 1995, 375 (6532) :564-567
[2]   Noise-enabled precision measurements of a duffing nanomechanical resonator [J].
Aldridge, JS ;
Cleland, AN .
PHYSICAL REVIEW LETTERS, 2005, 94 (15) :1-4
[3]   A molecular dynamics study on the vibration of carbon and boron nitride double-walled hybrid nanotubes [J].
Ansari, R. ;
Ajori, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 120 (04) :1399-1406
[4]   Detection of gas atoms with carbon nanotubes [J].
Arash, B. ;
Wang, Q. .
SCIENTIFIC REPORTS, 2013, 3
[5]   In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation [J].
Arenal, Raul ;
Lopez-Bezanilla, Alejandro .
ACS NANO, 2014, 8 (08) :8419-8425
[6]  
Bi KD, 2021, Journal of Advanced Manufacturing Science and Technology, V1, DOI DOI 10.51393/J.JAMST.2020002
[7]   Strain sensing of carbon nanotubes: Numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes [J].
Cao, GX ;
Chen, X ;
Kysar, JW .
PHYSICAL REVIEW B, 2005, 72 (19)
[8]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[9]  
Chaste J, 2012, NAT NANOTECHNOL, V7, P300, DOI [10.1038/NNANO.2012.42, 10.1038/nnano.2012.42]
[10]   Evaluation of thermoelastic damping in micromechanical resonators with axial pretension: An analytical model accounting for two-dimensional thermal conduction [J].
Chen, Siyu ;
Song, Jie ;
Guo, Fenglin .
JOURNAL OF THERMAL STRESSES, 2019, 42 (09) :1192-1205