Negative norm estimates and superconvergence results in Galerkin method for strongly nonlinear parabolic problems

被引:0
作者
Pany, Ambit Kumar [1 ]
Khebchareon, Morrakot [2 ,3 ,4 ]
Pani, Amiya K. [5 ]
机构
[1] SOA Deemed Be Univ, Ctr Appl Math & Computat, Bhubaneswar 752030, India
[2] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Adv Res Ctr Computat Simulat, Chiang Mai 50200, Thailand
[4] CHE, Ctr Excellence Math, 328 Si Ayutthaya Rd, Bangkok, Thailand
[5] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Strongly nonlinear parabolic problems; Galerkin method; Global optimal error estimate; Quasi-projection; Negative norm estimate; Superconvergence; ELLIPTIC-EQUATIONS; APPROXIMATIONS;
D O I
10.1016/j.camwa.2021.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conforming finite element Galerkin method is applied to discretise in the spatial direction for a class of strongly nonlinear parabolic problems. Using elliptic projection of the associated linearised stationary problem with Gronwall type result, optimal error estimates are derived, when piecewise polynomials of degree r >= 1 are used, which improve upon earlier results of Axelsson ((1977) [3]) requiring for 2d r >= 2 and for 3d r >= 3. Based on quasi-projection technique introduced by Douglas et al. ((1978) [11]), superconvergence result for the error between Galerkin approximation and approximation through quasi-projection is established for the semidiscrete Galerkin scheme. Further, a priori error estimates in Sobolev spaces of negative index are derived. Moreover, in a single space variable, nodal superconvergence results between the true solution and Galerkin approximation are established.
引用
收藏
页码:26 / 36
页数:11
相关论文
共 32 条
[1]  
Agmon S., 1965, Lecture on elliptic boundary value problems
[2]  
Arnold D.N., 1979, Calcolo, V16, P345, DOI [/10.1007/BF02576636, DOI 10.1007/BF02576636]
[3]   ERROR ESTIMATES FOR GALERKIN METHODS FOR QUASILINEAR PARABOLIC AND ELLIPTIC DIFFERENTIAL-EQUATIONS IN DIVERGENCE FORM [J].
AXELSSON, O .
NUMERISCHE MATHEMATIK, 1977, 28 (01) :1-14
[4]  
Bi CJ, 2012, INT J NUMER ANAL MOD, V9, P999
[5]  
BRAMBLE JH, 1977, MATH COMPUT, V31, P94, DOI 10.1090/S0025-5718-1977-0431744-9
[6]   SOME CONVERGENCE ESTIMATES FOR SEMI-DISCRETE GALERKIN TYPE APPROXIMATIONS FOR PARABOLIC EQUATIONS [J].
BRAMBLE, JH ;
SCHATZ, AH ;
THOMEE, V ;
WAHLBIN, LB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :218-241
[7]  
Brenner S. C., 2008, TEXTS APPL MATH
[8]   Some Recent Developments in Superconvergence of Discontinuous Galerkin Methods for Time-Dependent Partial Differential Equations [J].
Cao, Waixiang ;
Zhang, Zhimin .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) :1402-1423
[10]  
DOUGLAS J, 1971, ARCH RATION MECH AN, V42, P157