Orbifold singularities, Lie algebras of the third kind (LATKes), and pure Yang-Mills with matter

被引:3
作者
Friedmann, Tamar [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
SYMMETRY-BREAKING; GAUGE; CONSTRUCTION; METRICS;
D O I
10.1063/1.3528673
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discover the unique, simple Lie algebra of the third kind, or LATKe, that stems from codimension 6 orbifold singularities and gives rise to a new kind of Yang-Mills theory which simultaneously is pure and contains matter. The root space of the LATKe is one-dimensional and its Dynkin diagram consists of one point. The uniqueness of the LATKe is a vacuum selection mechanism. The World in a Point? Blow-up of C-3/Z3| Dynkin diagram of the LATKe Pure Yang-Mills with matter (C) 2011 American Institute of Physics. [doi:10.1063/1.3528673]
引用
收藏
页数:23
相关论文
共 46 条
  • [31] LIE SUPER-ALGEBRAS
    KAC, VG
    [J]. ADVANCES IN MATHEMATICS, 1977, 26 (01) : 8 - 96
  • [32] Kasymov Sh.M., 1987, Algebra Logic, V26, P277
  • [33] Geometric engineering of quantum field theories
    Katz, S
    Klemm, A
    Vafa, C
    [J]. NUCLEAR PHYSICS B, 1997, 497 (1-2) : 173 - 195
  • [34] Klein F., 1888, LECT IKOSAHEDRON SOL
  • [35] Ling WX, 1993, THESIS SIEGEN
  • [36] Mayr P, 1999, FORTSCHR PHYS, V47, P39, DOI 10.1002/(SICI)1521-3978(199901)47:1/3<39::AID-PROP39>3.0.CO
  • [37] 2-E
  • [38] GENERALIZED HAMILTONIAN DYNAMICS
    NAMBU, Y
    [J]. PHYSICAL REVIEW D, 1973, 7 (08): : 2405 - 2412
  • [39] Schafer R. D., 2017, INTRO NONASSOCIATIVE
  • [40] STEINBERG R, 1980, P SYMP PURE MATH, V37, P265