Orbifold singularities, Lie algebras of the third kind (LATKes), and pure Yang-Mills with matter

被引:3
作者
Friedmann, Tamar [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
SYMMETRY-BREAKING; GAUGE; CONSTRUCTION; METRICS;
D O I
10.1063/1.3528673
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discover the unique, simple Lie algebra of the third kind, or LATKe, that stems from codimension 6 orbifold singularities and gives rise to a new kind of Yang-Mills theory which simultaneously is pure and contains matter. The root space of the LATKe is one-dimensional and its Dynkin diagram consists of one point. The uniqueness of the LATKe is a vacuum selection mechanism. The World in a Point? Blow-up of C-3/Z3| Dynkin diagram of the LATKe Pure Yang-Mills with matter (C) 2011 American Institute of Physics. [doi:10.1063/1.3528673]
引用
收藏
页数:23
相关论文
共 46 条
  • [1] ACHARYA B, ARXIVHEPTH0011089, P84027
  • [2] Acharya B.S., 1999, Adv. Theor. Math. Phys., V3, P227, DOI DOI 10.4310/ATMP.1999.V3.N2.A3
  • [3] ON ISOLATED RATIONAL SINGULARITIES OF SURFACES
    ARTIN, M
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) : 129 - &
  • [4] Atiyah M., 2003, Adv. Theor. Math. Phys., V6, P1
  • [5] Baez JC, 2002, B AM MATH SOC, V39, P145
  • [6] Gauge symmetry and supersymmetry of multiple M2-branes
    Bagger, Jonathan
    Lambert, Neil
    [J]. PHYSICAL REVIEW D, 2008, 77 (06):
  • [7] Three-algebras and N=6 Chern-Simons gauge theories
    Bagger, Jonathan
    Lambert, Neil
    [J]. PHYSICAL REVIEW D, 2009, 79 (02):
  • [8] BAUERLE GGA, 1990, LIE ALGEBRAS FINITE
  • [9] ON THE CONSTRUCTION OF SOME COMPLETE METRICS WITH EXCEPTIONAL HOLONOMY
    BRYANT, RL
    SALAMON, SM
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 58 (03) : 829 - 850
  • [10] VACUUM CONFIGURATIONS FOR SUPERSTRINGS
    CANDELAS, P
    HOROWITZ, GT
    STROMINGER, A
    WITTEN, E
    [J]. NUCLEAR PHYSICS B, 1985, 258 (01) : 46 - 74