Fast Cloud Segmentation Using Convolutional Neural Networks

被引:81
|
作者
Droener, Johannes [1 ]
Korfhage, Nikolaus [1 ]
Egli, Sebastian [2 ]
Muehling, Markus [1 ]
Thies, Boris [2 ]
Bendix, Joerg [2 ]
Freisleben, Bernd [1 ]
Seeger, Bernhard [1 ]
机构
[1] Univ Marburg, Dept Math & Comp Sci, D-35043 Marburg, Germany
[2] Univ Marburg, Lab Climatol & Remote Sensing, D-35037 Marburg, Germany
关键词
Meteosat Second Generation; Convolutional Neural Networks; Cloud Mask; CLEAR-SKY; CLASSIFICATION; WEATHER; AVHRR; FOG;
D O I
10.3390/rs10111782
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information about clouds is important for observing and predicting weather and climate as well as for generating and distributing solar power. Most existing approaches extract cloud information from satellite data by classifying individual pixels instead of using closely integrated spatial information, ignoring the fact that clouds are highly dynamic, spatially continuous entities. This paper proposes a novel cloud classification method based on deep learning. Relying on a Convolutional Neural Network (CNN) architecture for image segmentation, the presented Cloud Segmentation CNN (CS-CNN), classifies all pixels of a scene simultaneously rather than individually. We show that CS-CNN can successfully process multispectral satellite data to classify continuous phenomena such as highly dynamic clouds. The proposed approach produces excellent results on Meteosat Second Generation (MSG) satellite data in terms of quality, robustness, and runtime compared to other machine learning methods such as random forests. In particular, comparing CS-CNN with the CLAAS-2 cloud mask derived from MSG data shows high accuracy (0.94) and Heidke Skill Score (0.90) values. In contrast to a random forest, CS-CNN produces robust results and is insensitive to challenges created by coast lines and bright (sand) surface areas. Using GPU acceleration, CS-CNN requires only 25 ms of computation time for classification of images of Europe with 508 x 508 pixels.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] GLIOBLASTOMA TUMOR SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Liu, Tiffany Ting
    Achrol, Achal
    Rubin, Daniel
    Chang, Steven
    NEURO-ONCOLOGY, 2017, 19 : 147 - 147
  • [32] Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks
    Shi, Feng
    Yang, Qi
    Guo, Xiuhai
    Qureshi, Touseef Ahmad
    Tian, Zixiao
    Miao, Huijuan
    Dey, Amini
    Li, Debiao
    Fan, Zhaoyang
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (10) : 2840 - 2847
  • [33] Coal Cleat/Fracture Segmentation Using Convolutional Neural Networks
    Sadegh Karimpouli
    Pejman Tahmasebi
    Erik H. Saenger
    Natural Resources Research, 2020, 29 : 1675 - 1685
  • [34] Acoustic neuroma segmentation using ensembled convolutional neural networks
    Zhu, Qibang
    Li, Hao
    Cass, Nathan D.
    Lindquist, Nathan R.
    Tawfik, Kareem O.
    Oguz, Ipek
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [35] SKIN MELANOMA SEGMENTATION USING RECURRENT AND CONVOLUTIONAL NEURAL NETWORKS
    Attia, Mohamed
    Hossny, Mohamed
    Nahavandi, Saeid
    Yazdabadi, Anousha
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 292 - 296
  • [36] Semantic segmentation of mouse jaws using convolutional neural networks
    Cooley, Victoria
    Stock, Stuart R.
    Guise, William
    Verma, Adya
    Wald, Tomas
    Klein, Ophir
    Joester, Derk
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [37] Malware Detection in Cloud Infrastructures using Convolutional Neural Networks
    Abdelsalam, Mahmoud
    Krishnan, Ram
    Huang, Yufei
    Sandhu, Ravi
    PROCEEDINGS 2018 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2018, : 162 - 169
  • [38] DenseKPNET: Dense Kernel Point Convolutional Neural Networks for Point Cloud Semantic Segmentation
    Li, Yong
    Li, Xu
    Zhang, Zhenxin
    Shuang, Feng
    Lin, Qi
    Jiang, Jincheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Fast battery capacity estimation using convolutional neural networks
    Li, Yihuan
    Li, Kang
    Liu, Xuan
    Zhang, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020,
  • [40] Fast Face-swap Using Convolutional Neural Networks
    Korshunova, Iryna
    Shi, Wenzhe
    Dambre, Joni
    Theis, Lucas
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3697 - 3705