Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement

被引:87
作者
Wang, Xiaodong [1 ]
Liang, Lirong [2 ]
Lv, Haicai [1 ]
Zhang, Yichuan [1 ,3 ]
Chen, Guangming [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Univ Macau, Inst Appl Phys & Mat Engn, Minist Educ, Joint Key Lab, Ave Univ, Taipa, Macao, Peoples R China
[3] Sichuan Univ, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
关键词
Thermoelectric; Aerogel; Compressive strain; Thermoelectric generator; ELECTRICAL-CONDUCTIVITY; CARBON NANOTUBES; HYBRID AEROGELS; EFFICIENT; COMPOSITES; GRAPHENE; MODULE; FOAM;
D O I
10.1016/j.nanoen.2021.106577
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the rapid development for thermoelectrics (TEs) and aerogels, elastic aerogel TE generators (TEGs) with vertical-type architectures have not been found to harvest heat utilizing vertical temperature difference. Herein, an elastic poly(3,4-ethylenedioxytiophene)-tosylate(PEDOT-Tos)/single-walled carbon nanotube (SWCNT) TE aerogel was fabricated via convenient chemical oxidative polymerization, physical mixing and subsequent freezedrying process. Then, we report the first elastic TEGs consisting of vertical-type aerogel legs, which not only inherit the advantages of ultralight weight and compressibility of aerogels, but also display high TE performance. The output performance can be conveniently adjusted by the number of legs, the temperature difference and compressive strain. An optimum output power of 1967 nW (output power density of 30.73 mW m-2) is achieved for the TE generator using 10 unipolar aerogel legs at 50% strain and temperature difference of 50 K. Furthermore, the ultralight and compressible TEG displays excellent capability of harvesting heat under vertical temperature difference and mechanical deformation, such as on hot oil/plate or compression by human body. The results will greatly facilitate the development of TE aerogels and TEGs, and widen the versatile application scenarios.
引用
收藏
页数:9
相关论文
共 54 条
[31]   Large scale mobility calculations in PEDOT (Poly(3,4-ethylenedioxythiophene)): Backmapping the coarse-grained MARTINI morphology [J].
Rolland, Nicolas ;
Modarresi, Mohsen ;
Felipe Franco-Gonzalez, Juan ;
Zozoulenko, Igor .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 179
[32]   Designing thermoelectric generators for self-powered wearable electronics [J].
Suarez, Francisco ;
Nozariasbmarz, Amin ;
Vashaee, Daryoosh ;
Ozturk, Mehmet C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2099-2113
[33]   Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials [J].
Sun, Xijing ;
Wei, Yanhong ;
Li, Juanjuan ;
Zhao, Jinghong ;
Zhao, Lijuan ;
Li, Quan .
SCIENCE CHINA-MATERIALS, 2017, 60 (02) :159-166
[34]   Carbon Nanoparticle Hybrid Aerogels: 3D Double-Interconnected Network Porous Microstructure, Thermoelectric, and Solvent-Removal Functions [J].
Tan, Dongxing ;
Zhao, Jian ;
Gao, Caiyan ;
Wang, Hanfu ;
Chen, Guangming ;
Shi, Donglu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21820-21828
[35]   Charge transfer complex-doped single-walled carbon nanotubes with reduced correlations between electrical conductivity and Seebeck coefficient for flexible thermoelectric generators [J].
Tan, Jingjuan ;
Huang, Hongfeng ;
Wang, Dagang ;
Qin, Shihui ;
Xiao, Xu ;
Chen, Zhanhua ;
Liu, Danqing ;
Wang, Lei .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (14) :4827-4835
[36]   Thermoelectric Si1-xGex and Ge epitaxial films on Si(001) with controlled composition and strain for group IV element-based thermoelectric generators [J].
Taniguchi, Tatsuhiko ;
Ishibe, Takafumi ;
Hosoda, Ryoya ;
Wagatsuma, Youya ;
Alam, Md. Mahfuz ;
Sawano, Kentarou ;
Uenuma, Mutsunori ;
Uraoka, Yukiharu ;
Yamashita, Yuichiro ;
Mori, Nobuya ;
Nakamura, Yoshiaki .
APPLIED PHYSICS LETTERS, 2020, 117 (14)
[37]   Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting [J].
Wang, Liqun ;
Si, Wenping ;
Tong, Yueyu ;
Hou, Feng ;
Pergolesi, Daniele ;
Hou, Jungang ;
Lippert, Thomas ;
Dou, Shi Xue ;
Liang, Ji .
CARBON ENERGY, 2020, 2 (02) :223-250
[38]   Efficient DMSO-Vapor Annealing for Enhancing Thermoelectric Performance of PEDOT:PSS-Based Aerogel [J].
Wang, Xiaodong ;
Liu, Peipei ;
Jiang, Qinglin ;
Zhou, Weiqiang ;
Xu, Jingkun ;
Liu, Jing ;
Jia, Yanhua ;
Duan, Xuemin ;
Liu, Youfa ;
Du, Yukou ;
Jiang, Fengxing .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) :2408-2417
[39]   Polypyrrole nanotube film for flexible thermoelectric application [J].
Wu, Jiansheng ;
Sun, Yimeng ;
Pei, Wen-Bo ;
Huang, Ling ;
Xu, Wei ;
Zhang, Qichun .
SYNTHETIC METALS, 2014, 196 :173-177
[40]   Investigating thermoelectric properties of doped polyaniline nanowires [J].
Wu, Jiansheng ;
Sun, Yimeng ;
Xu, Wei ;
Zhang, Qichun .
SYNTHETIC METALS, 2014, 189 :177-182