Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases

被引:111
作者
Vallania, Francesco [1 ,2 ]
Tam, Andrew [1 ,3 ]
Lofgren, Shane [1 ,2 ]
Schaffert, Steven [1 ,2 ]
Azad, Tej D. [1 ]
Bongen, Erika [1 ]
Haynes, Winston [2 ]
Alsup, Meia [1 ,3 ]
Alonso, Michael [4 ]
Davis, Mark [1 ]
Engleman, Edgar [4 ]
Khatri, Purvesh [1 ,2 ]
机构
[1] Stanford Univ, Inst Immun Transplantat & Infect, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Med, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[3] Stanford Univ, Stanford Inst Med Summer Res Program, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
关键词
GENE-EXPRESSION; CANCER;
D O I
10.1038/s41467-018-07242-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In silico quantification of cell proportions from mixed-cell transcriptomics data (deconvolution) requires a reference expression matrix, called basis matrix. We hypothesize that matrices created using only healthy samples from a single microarray platform would introduce biological and technical biases in deconvolution. We show presence of such biases in two existing matrices, IRIS and LM22, irrespective of deconvolution method. Here, we present immunoStates, a basis matrix built using 6160 samples with different disease states across 42 microarray platforms. We find that immunoStates significantly reduces biological and technical biases. Importantly, we find that different methods have virtually no or minimal effect once the basis matrix is chosen. We further show that cellular proportion estimates using immunoStates are consistently more correlated with measured proportions than IRIS and LM22, across all methods. Our results demonstrate the need and importance of incorporating biological and technical heterogeneity in a basis matrix for achieving consistently high accuracy.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data [J].
Abbas, AR ;
Baldwin, D ;
Ma, Y ;
Ouyang, W ;
Gurney, A ;
Martin, F ;
Fong, S ;
Campagne, MV ;
Godowski, P ;
Williams, PM ;
Chan, AC ;
Clark, HF .
GENES AND IMMUNITY, 2005, 6 (04) :319-331
[3]  
Andres-Terre M, 2015, IMMUNITY, V43, P1199, DOI 10.1016/j.immuni.2015.11.003
[4]   A Meta-analysis of Lung Cancer Gene Expression Identifies PTK7 as a Survival Gene in Lung Adenocarcinoma [J].
Chen, Ron ;
Khatri, Purvesh ;
Mazur, Pawel K. ;
Polin, Melanie ;
Zheng, Yanyan ;
Vaka, Dedeepya ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Xu, Yue ;
Vicent, Silvestre ;
Butte, Atul J. ;
Sweet-Cordero, E. Alejandro .
CANCER RESEARCH, 2014, 74 (10) :2892-2902
[5]   Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states [J].
Furman, David ;
Chang, Junlei ;
Lartigue, Lydia ;
Bolen, Christopher R. ;
Haddad, Francois ;
Gaudilliere, Brice ;
Ganio, Edward A. ;
Fragiadakis, Gabriela K. ;
Spitzer, Matthew H. ;
Douchet, Isabelle ;
Daburon, Sophie ;
Moreau, Jean-Francois ;
Nolan, Garry P. ;
Blanco, Patrick ;
Dechanet-Merville, Julie ;
Dekker, Cornelia L. ;
Jojic, Vladimir ;
Kuo, Calvin J. ;
Davis, Mark M. ;
Faustin, Benjamin .
NATURE MEDICINE, 2017, 23 (02) :174-184
[6]   CellMix: a comprehensive toolbox for gene expression deconvolution [J].
Gaujoux, Renaud ;
Seoighe, Cathal .
BIOINFORMATICS, 2013, 29 (17) :2211-2212
[7]   The prognostic landscape of genes and infiltrating immune cells across human cancers [J].
Gentles, Andrew J. ;
Newman, Aaron M. ;
Liu, Chih Long ;
Bratman, Scott V. ;
Feng, Weiguo ;
Kim, Dongkyoon ;
Nair, Viswam S. ;
Xu, Yue ;
Khuong, Amanda ;
Hoang, Chuong D. ;
Diehn, Maximilian ;
West, Robert B. ;
Plevritis, Sylvia K. ;
Alizadeh, Ash A. .
NATURE MEDICINE, 2015, 21 (08) :938-945
[8]   Optimal Deconvolution of Transcriptional Profiling Data Using Quadratic Programming with Application to Complex Clinical Blood Samples [J].
Gong, Ting ;
Hartmann, Nicole ;
Kohane, Isaac S. ;
Brinkmann, Volker ;
Staedtler, Frank ;
Letzkus, Martin ;
Bongiovanni, Sandrine ;
Szustakowski, Joseph D. .
PLOS ONE, 2011, 6 (11)
[9]  
Haynes W.A., 2016, Pac Symp Biocomput, V22, P144
[10]   A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation [J].
Khatri, Purvesh ;
Roedder, Silke ;
Kimura, Naoyuki ;
De Vusser, Katrien ;
Morgan, Alexander A. ;
Gong, Yongquan ;
Fischbein, Michael P. ;
Robbins, Robert C. ;
Naesens, Maarten ;
Butte, Atul J. ;
Sarwal, Minnie M. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2013, 210 (11) :2205-2221